横风环境中弓网动力学性能分析
详细信息 本馆镜像全文    |  推荐本文 | | 获取馆网全文
摘要
为研究横风对弓网动力学性能的影响,基于AR模型的线性滤波法和Davenport风速谱,构建了受电弓-接触网系统的随机风场,获得了作用于受电弓和接触网的风速时程;建立受电弓/高速列车空气动力学仿真模型,采用计算流体力学方法求解了列车运行速度为300 km·h-1,不同横风速度下的受电弓气动抬升力,从而得到横风平均速度为20 m·s-1时,受电弓气动抬升力时程;采用三维弓网耦合动力学模型,系统分析了横风对弓网动力学的影响规律。研究表明,横风使得受电弓的气动抬升力变大,并与横风速度的平方成正比;受电弓气动抬升力的增加和波动,使得接触压力平均值以及标准差变大;接触网产生的风致振动改变了弓网之间的接触状态,导致接触压力波动范围变大,因此,列车在横风环境中运行时,不仅增大了弓网接触压力从而加剧了受电弓滑板和接触线的磨耗,而且使得接触压力最小值减小以及标准差增大,导致弓网受流质量显著降低。
In order to study the influence of cross wind on pantograph-catenary dynamic behavior,the stochastic wind field of a pantograph-catenary system was established to obtain the wind speed time histories acting on the pantograph and catenary based on the linear filtering method of AR model and Davenport wind speed spectrum. The aerodynamic model of pantograph / high-speed train was built and the computational fluid dynamics method was used to calculate the aerodynamic uplift forces of the pantograph at different cross wind speeds while the train running at a speed of 300 km / h,then the time history of the aerodynamic uplift force of the pantograph was obtained under the average wind speed of 20 m / s. A three-dimensional pantograph-catenary coupled dynamic model was used to analyze the influence rule of the cross wind on the pantograph-catenary dynamic behavior systematically. The results showed that the aerodynamic uplift force of the pantograph increases due to cross wind and it is proportional to the square of the cross wind speed; moreover,the increase and fluctuation of the pantograph aerodynamic uplift force make the mean and standard deviation of the contact force increase; the contact status between the collector strip and the contact wire is changed by the wind-induced vibration of the catenary,it leads to the fluctuation range of the contact force expands; therefore,while the train running in the cross wind environment,not only the contact force increases and the abrasion of the collector strip and the contact wire rises,but also the current collection quality drops because the minimum value of the contact force decreases and its standard deviation increases.
引文
[1]Wu T X,Brennan M J.Basic analytical study of pantographcatenary system dynamics[J].Vehicle System Dynamics,1998,30(6):443-456.
    [2]Collina A,Bruni S.Numerical simulation of pantographoverhead equipment interaction[J].Vehicle System Dynamics,2002,38(4):261-291.
    [3]Zhang W H,Mei G M,Wu X J,et al.Hybrid simulation of dynamics for the pantograph-catenary system[J].Vehicle System Dynamics,2002,38(6):393-414.
    [4]Kerstin S,Wolfgang E,Michael K,et al.An approach to continuous on-site monitoring of contact forces in current collectors by a fiber optic sensing system[J].Optics and Lasers in Engineering,2013(51):172-179.
    [5]Bocciolone M,Resta F,Rocchi D,et al.Pantograph aerodynamic effects on the pantograph-catenary interaction[J].Vehicle System Dynamics,2006,44(suppl):560-570.
    [6]李瑞平,周宁,张卫华,等.高速列车过隧道对弓网动力学影响分析[J].振动与冲击,2013,32(6):33-37.LI Rui-ping,ZHOU Ning,ZHANG Wei-hua,et al.Influence of high-speed trains passing through tunnel on pantographcatenary dynamic behaviors[J].Journal of Vibration and Shock,2013,32(6):33-37.
    [7]Poetsch G,Evans J,Meisinger R,et al.Pantograph/catenary dynamics and control[J].Vehicle System Dynamics,1997,28(2-3):393-414.
    [8]Pombo J,Ambrósio J,Pereira M,et al.Influence of the aerodynamic forces on the pantograph-catenary system for high speed trains[J].Vehicle System Dynamics,2009,47(11):1327-1347.
    [9]李瑞平,周宁,张卫华,等.基于AR模型的接触网脉动风场与风振响应[J].交通运输工程学报,2013,13(4):56-62.LI Rui-ping,ZHOU Ning,ZHANG Wei-hua,et al.Fluctuating wind field and wind-induced vibration response of catenary based on AR model[J].Journal of Traffic and Transportation Engineering,2013,13(4):56-62.
    [10]赵飞,刘志刚,韩志伟.随机风场对弓网系统动态性能影响研究[J].铁道学报,2012,34(10):36-42.ZHAO Fei,LIU Zhi-gang,HAN Zhi-wei.Simulation study on influence of stochastic wind field to dynamic behavior of pantograph-catenary system[J].Journal of the China Railway Society,2012,34(10):36-42.
    [11]张希黔,葛勇,严春风,等.脉动风场模拟技术的研究与进展[J].地震工程与工程振动,2008,28(6):206-212.ZHANG Xi-qian,GE Yong,YAN Chun-feng,et al.Advances in research of simulation technology of fluctuation wind loading[J].Journal of Earthquake Engineering and Engineering Vibration,2008,28(6):206-212.
    [12]王之宏.风荷载的模拟研究[J].建筑结构学报,1994,15(1):44-52.WANG Zhi-hong.Simulation of wind loading[J].Journal of Building Structures,1994,15(1):44-52.
    [13]舒新玲,周岱.风速时程AR模型及其快速实现[J].空间结构,2003,9(4):27-32.SHU Xin-Ling,ZHOU Dai.AR model of wind speed time series and its rapid implementation[J].Spatial Structures,2003,9(4):27-32.
    [14]Bouferrouk A,Baker C,Sterling M,et al.Calculation of the cross wind displacement of pantographs[C].6th International Colloquium on Bluff Bodies Aerodynamics and Applications,Milano,Italy,2008.
    [15]田红旗.中国列车空气动力学研究进展[J].交通运输工程学报,2006,6(1):1-9.TIAN Hong-qi.Study evolvement of train aerodynamics in China[J].Journal of Traffic and Transportation Engineering,2006,6(1):1-9.
    [16]李瑞平,周宁,张卫华,等.受电弓气动抬升力计算方法与分析[J].铁道学报,2012,34(8):26-32.LI Rui-ping,ZHOU Ning,ZHANG Wei-hua,et al.Calculation and analysis of pantograph aerodynamic uplift force[J].Journal of The China Railway Society,2012,34(8):26-32.
    [17]Baker C J.The simulation of unsteady aerodynamic cross wind forces on trains[J].Journal of Wind Engineering and Industrial Aerodynamics,2010,98(2):88-99.
    [18]李丰良,李敏,唐建湘.受电弓的建模与参数测试[J].中南大学学报(自然科学版),2006,37(1):194-199.LI Feng-liang,LI Min,TANG Jian-xiang.Establishment of the pantographs mechanical models and measurement of their parameters[J].Journal of Central South University(Science and Technology),2006,37(1):194-199.

版权所有:© 2023 中国地质图书馆 中国地质调查局地学文献中心