液气耦合式结构竖向位移测量系统精度及误差分析
详细信息 本馆镜像全文    |  推荐本文 | | 获取馆网全文
摘要
为实现桥梁挠度等结构竖向位移的精确、快速测量,研发了一种基于液气耦合连通管的结构竖向位移测量系统,以液体为水的系统为例,对其测量精度及误差的参数影响性进行理论分析。理论分析表明:系统理论测量精度可达0.01mm;当水的温度在0~60℃变化时,其密度变化使位移测量值与实际值产生偏差,最大相对误差为1.678%;密闭气体的温度变化与其导致的位移测量误差之间呈非线性关系,位移测量误差随温差增加而增大,随密闭气体体积的增大而增大,随基准温度升高而减小;在我国范围内,纬度变化引起的系统测量最大相对误差为0.094%;当海拔高度在1 000m范围内,由海拔变化引起的系统测量最大相对误差为0.031 4%。试验和某千米级悬索桥工程应用实例表明:在短期测试时该系统具有0.1mm级的精度,可连续实时测量且操作便捷。
In order to realize the precise and rapid measurement of structural vertical displacement,a kind of structural vertical displacement measuring system based on the liquid-air coupling interconnected pipes was developed.For this study,the system with fresh water was taken as the sample,and the parametric effect of the measuring precision and errors was theoretically analyzed.The results of the analysis indicate that the theoretical measuring precision of the system is up to0.01 mm.When the temperature of the water varies within the range of 0~60℃,the variation of water density induces differences between the measured displacement values and the actual condition,and the maximum relative error is 1.678%.The temperature changes of the closed air keep a non-linear relation with the displacement measuring errors.The displacement measuring errors increase as the temperature difference becomes greater,increases as the volume of the closed air swells and decreases as the basic temperature rises.In China,the maximum relative measuring error of the system induced by latitude variation is 0.094%.When the latitude is less than 1 000 m,the maximum relative measuring error of the system induced by latitude variation is 0.031 4%.The results of the experiment and application indicate that in the short-term testing,the system has a 0.1mm grade precision,which is able to accommodate real-time measurement and is convenient for operation.
引文
[1]蒋洪川,张文旭,张万里.薄膜磁致伸缩系数计算机辅助测试系统的设计[J].电子测量与仪器学报,2005,(3):75-77,81.
    [2]Barr P,Eberhard M O,Stanton J F,et al.High Performance Concrete in Washington State SR18/SR516Over-crossing:Final Report on Girder Monitoring[R].Washington:Washington State Transportation Center,2000.
    [3]Stanton J F,Barr P J,Eberhard M O.Behavior of High-strength HPC Bridge Girders[J].ACI Special Publication,SP-189,American Concrete Institute.2000:71-83.
    [4]赵兴雅,汪正兴,朱世峰,等.新型竖向位移测量系统的研究及应用[J].世界桥梁,2011,(1):51-54.
    [5]张洁,朱永,谭靖,等.一种新型连通管式光电液位传感器[J].仪器仪表学报,2004,25(4):203-211.
    [6]蓝章礼,张洪,周建庭.基于激光和视频的桥梁挠度测量新系统[J].仪器仪表学报,2009,30(11):2 405-2 410.
    [7]杨建春,陈伟民.连通管式光电液位传感器在桥梁挠度监测中的应用[J].传感器与微系统,2006,25(8):79-81.
    [8]曾威,于德介,胡柏学,等.基于连通管原理的桥梁挠度自动监测系统[J].湖南大学学报(自然科学版),2007,34(7):44-47.
    [9]杨学山,候兴民.桥梁挠度测量的一种新方法[J].土木工程学报,2002,35(2):92-96.
    [10]张奔牛,蓝章礼,周志祥.位移/挠度检测和监测装置及方法:中国,200510057473.6[P].2005-12-28.
    [11]谢毅,严普强,毛乐山.铁路桥梁动挠度惯性测量方法[J].仪器仪表学报,1999,20(1):20-22.
    [12]雷小华.大跨径拱桥多维位移的光电组合监测技术研究(博士学位论文)[D].重庆:重庆大学,2008.
    [13]熊先才,章鹏,苻欲梅,等.光电液位传感器及其在桥梁挠度自动测量中的应用[J].地震工程与工程振动,2006,26(4):260-264.
    [14]蓝章礼,杨小帆.非接触式张力线桥梁挠度测量系统[J].仪器仪表学报,2008,29(5):1 058-1 062.
    [15]中铁大桥局集团武汉桥梁科学研究院有限公司,中铁大桥局股份有限公司.一种液气耦合压差式桥梁挠度测试方法:中国,ZL200810237453.0[P].2008-12-26.

版权所有:© 2023 中国地质图书馆 中国地质调查局地学文献中心