基于流固耦合的富水软岩地层隧道排水方案研究
详细信息 本馆镜像全文    |  推荐本文 | | 获取馆网全文
摘要
为研究富水软岩隧道最优排水方案,以甘肃省道S304线关山隧道为研究对象,基于流固耦合分析理论,建立了应力场和渗流场作用下的隧道开挖模型。借助SoilWorks有限元软件对隧道全排水、全封堵及堵水限排三种施工方案进行了模拟,并对孔隙水压力及水位线、位移场及应力场、围岩塑性区的分布规律进行了研究。结果表明:富水软岩隧道开挖时,采用堵水限排方案可以有效减小对地下水位的影响,经济效益显著;三种施工方案中,堵水限排方案隧道的拱顶沉降、隧底隆起以及地表下沉量最小,但围岩的应力最大,仰拱最大拉应力为全排水方案的2.2倍;全排水方案与全封堵方案围岩塑性区主要产生在仰拱,堵水限排方案围岩塑性区主要产生在边墙两侧,塑性区的范围较小。研究结果可为富水软岩地层同类工程排水方案的确定提供借鉴。
In order to determine the best drainage scheme of water-rich soft rock tunnel,the excavation models of the Guanshan tunnel in Gansu Province were established under stress and seepage fields based on the coupling theory of fluid and solid.The complete drainage scheme,non-drainage scheme,and controlled drainage scheme were analyzed using the finite element analysis software SoilWorks.The distribution characteristics of pore water pressure and water level,tunnel displacement and stress,and plastic zone of surrounding rock were studied.The results showed that the controlled drainage scheme can reduce the effect to underground water during the tunnel excavation;for the controlled drainage scheme,the amounts of crown settlement,invert uplift,and ground settlement are the smallest while the surrounding rock stress is the largest,and the invert maximum tension stress for the controlled drainage scheme is 2.2times of that for the complete drainage scheme;and the rock plastic zone is mainly distributed in the invert area for the complete drainage scheme and non-drainage scheme,and in the side wall for the controlled drainage scheme.The results can provide reference for the selection of drainage scheme of water-rich soft rock tunnel.
引文
[1]严绍洋,李亮辉,高燕希,等.公路隧道开挖渗流场的有限差分法分析[J].中外公路,2007,27(6):120-122.(YAN Shao-yang,LI Liang-hui,GAO Yan-xi,et al.To analysis the seepage field of highway tunnel excavation in finite difference method[J].Journal of China&Foreign Highway,2007,27(6):120-122.(in Chinese))
    [2]蒋忠信.隧道工程与水环境的相互作用[J].岩石力学与工程学报,2005,24(1):121-126.(JIANG Zhong-xin.Interaction between tunnel engineering and water environment[J].Chinese Journal of Rock Mechanics and Engineering,2005,24(1):121-126.(in Chinese))
    [3]罗鉴银,傅瓦利.岩溶地区开凿隧道对地下水循环系统的破坏—以重庆市中梁山为例[J].西南农业大学学报:自然科学版,2005,27(4):432-435.(LUO Jian-yin,FU Wa-li.Destruction caused by tunneling works to the circulatory system of underground water in karst areas-a case study of the Zhong Liang Mountains in Chong Qing[J].Journal of Southwest Agricultural University:Natural Sciences,2005,27(4):432-435.(in Chinese))
    [4]刘丹,杨立中,于苏俊,等.华蓥山隧道排水的生态环境问题及效应[J].西南交通大学学报,2011,36(3):308-313.(LIU Dan,YANG Li-zhong,YU Su-jun,et al.On ecological environment problems and effects caused by discharge from Huayingshan Tunnel[J].Journal of Southwest Jiaotong University,2011,36(3):308-313.(in Chinese))
    [5]邓谊明.大瑶山隧道深层岩溶水地段洞内长期排水所引起的水文地质变化特征及其整治措施[J].水文地质与工程地质,1992,19(6):44-49(DENG Yi-ming.Changes characteristics in hydro geological caused by long-term drainage inside the cave of Dayaoshan tunnel in deep water-enriched karst area and treatment measures[J].Hydrogeology and Engineering Geology,1992,19(6):44-49(in Chinese))
    [6]丁浩,蒋树屏,李勇,等.控制排放的隧道防排水技术研究[J].岩土工程学报,2007,27(6):1398-1403.(DING Hao,JIANG Shu-ping,LI Yong,et al.Study on waterproof and drainage techniques of tunnels based on controlling drainage[J].Chinese Journal of Geotechnical Engineering,2007,27(6):1398-1430.(in Chinese))
    [7]高新强.高水压山岭隧道衬砌水压力分布规律研究[J].岩石力学与工程学报,2007,26(6):983-987.(GAO Xin-qiang.Study on the distribution rule of water pressure upon lining subject to high hydraulic pressure mountain tunnel[J].Chinese Journal of Rock Mechanics and Engineering,2007,26(6):983-987.(in Chinese))
    [8]张成平,张顶立,骆建军,等.高压富水岩溶隧道注浆机理及作用效果分析[J].地下空间与工程学报,2009,5(5):683-685.(ZHANG Cheng-ping,ZHANG Ding-li,LUO Jian-jun,et al.Analysis of grouting mechanism and its effect for karst tunnel lining high water pressure and water-enriched region[J].Chinese Journal of Underground Space and Engineering,2009,5(5):693-685.(in Chinese))
    [9]路平.考虑流固耦合的富水软岩隧道力学特性及合理注浆参数研究[D].长沙:中南大学,2012.(LU Ping.The research on mechanical characteristics and reasonable grouting parameters considering the coupling of fluid and solid in water-rich tunnel with soft rock[D].Chang Sha:Zhong Nan University,2012.(in Chinese))
    [10]杨卓.大丽高速双龙富水隧道稳定性分析及防排水措施研究[D].昆明:昆明理工大学,2013.(YANG Zhuo.Stability analysis and waterproof and drainage technology research of Shuanglong water-rich tunnel in Dali Highway[D].Kunming:Kunming University of Science and Technology,2013.(in Chinese))
    [11]王永刚,丁文其,景韧,等.关山隧道断层破碎带三维有限元地震动力响[J].公路交通科技,2011,28(8):115-119.(WANG Yong-gang,DING Wen-qi,JING Ren,et al.Seismic dynamic response of fault fracture zone at Guanshan Tunnel based on3DFEM[J].Journal of Highway and Transportation Research and Development,2011,28(8):115-119.(in Chinese))
    [12]蔚立元,李术才,徐帮树,等.水下隧道流固耦合模型试验与数值分析[J].岩石力学与工程学报,2011,30(7):1467-1474.(YU Li-yuan,LI Shu-cai,XU Bang-shu,et al.Study of solidfluid coupling model test and numerical analysis of underwater tunnels[J].Chinese Journal of Rock Mechanics and Engineering,2011,30(7):1467-1474.(in Chinese))
    [13]长安大学.富水软岩隧道防排水技术研究[R].西安,2008.(Chang′an University.Study on the waterproof and drainage technology of water-rich soft rock tunnel[R].Xi′an,2008.(in Chinese))
    [14]JTG D70-2004.公路隧道设计规范[S].(JTG D70-2004.Code for design of road tunnel[S].(in Chinese))
    [15]甘肃省交通科学研究院有限公司.关山隧道地质勘察报告[R].兰州,2007.(Gansu Provincial Communications Science Research Institute Co.,Ltd.Geological survey report of Guanshan Tunnel[R].Lanzhou,2007.(in Chinese))

版权所有:© 2023 中国地质图书馆 中国地质调查局地学文献中心