基于性能的中等跨径混凝土斜拉桥抗震风险分析
详细信息 本馆镜像全文    |  推荐本文 | | 获取馆网全文
摘要
为促进基于性能的概率性抗震评估方法在中等跨径混凝土斜拉桥中的应用,以一实际工程为例,建立了有限元动力分析模型。结合快速非线性分析(FNA)和增量动力分析(IDA)的优点,从PEER强震数据库中选取13条远场地震波进行快速增量动力分析(FNIDA),采用非参数统计方法形成了16%,50%和84%三种概率水平的IDA分位曲线。基于桥址处的地震危险性曲线建立了算例桥梁的概率地震风险评估曲线,并根据《公路桥梁抗震设计细则》对其抗震性能和抗震风险进行了分析。研究结果表明:FNIDA方法能很好地解决传统IDA方法在斜拉桥抗震分析中计算量大和耗时多的缺点;纵桥向地震作用下支座最易破坏,横桥向地震作用下挡块最易破坏,且塔底截面横桥向的抗震能力也有待加强;所提出的概率性风险评估曲线可直接用于斜拉桥结构的抗震性能评估。
To popularize the application of the performance-based probabilistic seismic assessment method for medium-span concrete cable-stayed bridges,a bridge was taken as a case-study to establish the nonlinear finite element model.The advantages of the fast nonlinear analysis(FNA)and the incremental dynamic analysis(IDA)were considered to propose the fast nonlinear incremental dynamic analysis(FNIDA).From the ground motion database,13far-fault ground motions were selected for nonlinear analysis.The nonparametric statistic method was applied to develop the fractile IDA curves at three probability levels,16%,50% and 84%. The probabilistic seismic risk assessment curves were established based on the seismic hazard curves of the bridge site.Then,the seismic performance and seismic risk of the bridge were estimated according to the Seismic Design Guidelines of Bridges of China.The results show that the FNIDAmethod can overcome the problems of great amount of calculation and time-consuming with the traditional IDA method.In the longitudinal direction,bearings are the most vulnerable components.In the transversal direction,the shear key shows significant vulnerability and the bottom section of the concrete tower needs to be retrofitted.Probabilistic seismic risk curves can be directly applied to the seismic evaluation of the cable-stayed bridges.
引文
[1]KOWALSKY M J.Displacement-based Design:A Methodology for Seismic Design Applied to RC Bridge Columns[D].San Diego:University of California,1994.
    [2]吴文朋,李立峰,王连华,等.基于IDA的高墩大跨桥梁地震易损性分析[J].地震工程与工程振动,2012,32(3):117-123.WU Wen-peng,LI Li-feng,WANG Lian-hua,et al.Evaluation of Seismic Vulnerability of High-pier Long-span Bridge Using Incremental Dynamic Analysis[J].Journal of Earthquake Engineering and Engineering Vibration,2012,32(3):117-123.
    [3]李立峰,吴文朋,黄佳梅,等.地震作用下中等跨径RC连续梁桥系统易损性研究[J].土木工程学报,2012,45(10):152-160.LI Li-feng,WU Wen-peng,HUANG Jia-mei,et al.Study on System Vulnerability of Medium Span Reinforcement Concrete Continuous Bridge Under Earthquake Excitation[J].China Civil Engineering Journal,2012,45(10):152-160.
    [4]焦驰宇.基于性能的大跨斜拉桥地震易损性分析[D].上海:同济大学,2008.JIAO Chi-yu.Seismic Fragility Analysis of Longspan Cable-stayed Bridges Based on Performance[D].Shanghai:Tongji University,2008.
    [5]CASCIATI F,CIMELLARO G P,DOMANESCHI M.Seismic Reliability of a Cable-stayed Bridge Retrofitted with Hysteretic Devices[J].Computers and Structures,2008,86(17):1769-1781.
    [6]聂利英,张雷,李硕娇.地震作用下大跨度悬索桥纵向破坏模式研究[J].土木工程学报,2011,44(4):91-97.NIE Li-ying,ZHANG Lei,LI Shuo-jiao.Study of the Longitudinal Failure Pattern of Long Span Suspension Bridges Under Earthquake[J].China Civil Engineering Journal,2011,44(4):91-97.
    [7]FEMA-445,Next-Generation Performance-based Seismic Design Guidelines-Program Plan for New and Existing Buildings[S].
    [8]MANDER J B,DHAKAL R P,MASHIKO N,et al.Incremental Dynamic Analysis Applied to Seismic Financial Risk Assessment of Bridges[J].Engineering Structures,2007,29(10):2662-2672.
    [9]PADGEET J E,DENNEMANN K,GHOSH J.Riskbased Seismic Life-cycle Cost-benefit(LCC-B)Analysis for Bridge Retrofit Assessment[J].Structural Safety,2010,32(3):165-173.
    [10]王建民,王国亮,聂建国,等.基于概率的桥梁结构地震危害性分析[J].土木工程学报,2010,43(11):86-93.WANG Jian-min,WANG Guo-liang,NIE Jian-guo,et al.Probability Based Seismic Risk Analysis of Bridge Structures[J].China Civil Engineering Journal,2010,43(11):86-93.
    [11]VAMVATSIKOS D,CORNELL C A.Incremental Dynamic Analysis[J].Earthquake Engineering and Structural Dynamics,2002,31:491-514.
    [12]WILSON E L.Three Dimensional Static and Dynamic Analysis of Structures[M].3rd ed.Berkeley:Computers and Structures,Inc.,2002.
    [13]JTG/TB 02-01—2008,公路桥梁抗震设计细则[S].JTG/TB 02-01—2008,Guidelines for Seismic Design of Highway Bridges[S].
    [14]VAMVATSIKOS D,CORNELL CA.Applied Incremental Dynamic Analysis[J].Earthquake Spectra,2004,20(2):523-553.
    [15]汪梦甫,曹秀娟,孙文林.增量动力分析方法的改进及其在高层混合结构地震危害评估中的应用[J].工程抗震与加固改造,2010,32(1):104-109.WANG Meng-fu,CAO Xiu-juan,SUN Wen-lin.Incremental Dynamic Analysis Applied to Seismic Risk Assessment of Hybrid Structure.[J].Earthquake Resistant and Retrofitting,2010,32(1):104-109.
    [16]DOWELL R K,SEIBLE F,WILSON E L.Pivot Hysteresis Model for Reinforced Concrete Members[J].ACI Structural Journal,1998,95(5):607-617.
    [17]AVIRAM A,MACKIE K R,BZIDAR S.Guidelines for Nonlinear Analysis of Bridge Structures in California[R].Berkeley:University of California,2008.
    [18]ZHU L D,XIANG H F,XU Y L.Triple-girder Model Formodal Analysis of Cable-stayed Bridges with Warping Effect[J].Engineering Structures,2000,22(10):1313-1323.
    [19]邵旭东,程翔云,李立峰.桥梁设计与计算[M].第2版.北京:人民交通出版社,2012.SHAO Xu-dong,CHENG Xiang-yun,LI Li-feng.Bridge Design and Computation[M].2nd ed.Beijing:China Communications Press,2012.
    [20]SHOME N,CORNELL C,BAZZURRO P,CARBALLO J.Earthquakes,Records and Nonlinear Responses[J].Earthquake Spectra,1998,14(3):469-500.
    [21]李爽,谢礼立.近场问题的研究现状与发展方向[J].地震学报,2007,29(1):102-111.LI Shuang,XIE Li-li.Progress and Trend on Nearfield Problems in Civil Engineering[J].Acta Seismologica Sinica,2007,29(1):102-111.
    [22]JALAYER F,CPRMELL C A.A Technical Framework for Probability-based Demand and Capacity Factor(DCFD)Seismic Formats[R].Berkeley:University of California,2004.

版权所有:© 2023 中国地质图书馆 中国地质调查局地学文献中心