不同支座工作模式下大跨度高铁连续梁桥地震损伤性能对比研究
详细信息 本馆镜像全文    |  推荐本文 | | 获取馆网全文
摘要
桥梁结构在强震作用下的变形延性、滞回耗能和结构损伤,是基于性能抗震设计的重要基础。以京沪高铁某代表性大跨度连续梁桥为对象,建立考虑支座破坏滑移的多阶段非线性力学行为(模型Ⅰ)以及支座保持理想工作状态(模型Ⅱ)的两种全桥模型,采用非线性时程积分方法对比分析了两种模型在三种地震动水准下的抗震性能。研究表明,在顺桥向,当考虑了支座的破坏后滑移效应时,强震下支座进入非线性工作状态能够降低固定墩的地震响应,但同时也相应提高了边墩的地震需求,其地震响应在一定程度上有所提高。在横桥向,支座保持理想弹性工作状态使得上部梁体的地震作用直接传递到桥墩,显著提高了各墩的变形和耗能需求。对于两种计算模型,三种地震动水准下各墩的变形延性和损伤状态均处于较低的水平,说明我国大跨度高铁连续梁桥具有较高的抗震能力。
The displacement ductility,hysteretic energy and structural damage to bridge structure under strong earthquake are important bases of performance-based seismic design. A representative large-span continuous girder bridge of Beijing-Shanghai high-speed railway was taken as the research object,and two models which consider bearing's multi-stage nonlinear mechanical behavior because of failure slip( model Ⅰ) and bearing maintaining the hypothetical elastic state( model Ⅱ) were built. The seismic damage performance of the two bridge models was analyzed comparatively under three earthquake levels by nonlinear time history analysis. According to the study,along the bridge,when the slip of bearings under strong earthquake was considered,the seismic response of the fixed pier could be depressed because of the nonlinear work state of bearings. At the same time,the seismic demand of abutment pier increases correspondingly in a certain extent. In the transverse direction,bearings remaining elastic working conditions results in the earthquake action of the upper beam transmitting directly to the piers,and significantly raises the deformation and energy needs of piers. For the both bridge models,deformation ductility and damage state of each pier are at a low state under three earthquake levels,which shows that the large-span continuous bridge of high-speed railway in our country has strong seismic capacity.
引文
[1]Applied Technology Council.Seismic Evaluation and Retrofit of Concrete Building,ATC-40[R].Redwood City,California:Applied Technology Council,1996.
    [2]Federal Emergency Management Agency(FEMA).Recommended Seismic Design Criteria for New Steel Moment Frame Buildings[R].Report No.FEMA-350,SAC Joint Venture,Washington DC:Federal Emergency Management Agency,2000.
    [3]Federal Emergency Management Agency(FEMA).Pre-standard and Commentary for the Seismic Rehabilitation of Buildings[R].Report No.FEMA-356,Washington DC:Federal Emergency Management Agency,2000.
    [4]马宏旺,吕西林.建筑结构基于性能抗震设计的几个问题[J].同济大学学报,2002,30(12):1429-1434.MA Hongwang,LV Xilin.Some problems about performance-based seismic design[J].Journal of Tongji University,2002,30(12):1429-1434.(in Chinese)
    [5]Bertero R D,Vertero V.Performance-based seismic engineering:the need for a reliable conceptual comprehensive approach[J].Earthquake Engineering and Structural Dynamics,2002,31:627-652.
    [6]江辉,朱晞.以性能指标为控制变量的强度折减因子[J].铁道学报,2008,26(5):88-95.JIANG Hui,ZHU Xi.Strength reduction factor model with performance index as control parameter[J].Journal of the China Railway Society,2008,26(5):88-95.(in Chinese)
    [7]朱晞,江辉.桥梁墩柱基于性能的抗震设计方法[J].土木工程学报,2009,42(4):85-92.ZHU Xi,JIANG Hui.Performance-based seismic design method for RC bridge piers[J].China Civil Engineering Journal,2009,42(4):85-92.(in Chinese)
    [8]王丰,李宏男,伊廷华.钢筋混凝土结构直接基于损伤性能目标的抗震设计方法[J].振动与冲击,2009,28(2):128-131,144.WANG Feng,LI Hongnan,YI Tinghua.Direct damage-based seismic design methodology for RC buildings[J].Journal of Vibration and Shock,2009,28(2):128-131,144.(in Chinese)
    [9]Kowalsky M J,Priestley M J N,Macrae G A.Displacement-based design of RC bridge columns in seismic regions[J].Earthquake Eng.Stru.Dyn.,1995,24:1623-1643.
    [10]黄建文,朱晞.以位移为基础的钢筋混凝土连续梁桥抗震设计方法[J].中国公路学报,2005,18(2):28-33.HUANG Jianwen,ZHU Xi.Displacement-based seismic design method for RC continuous girder bridges[J].China Journal of Highway and Transport,2005,18(2):28-33.(in Chinese)
    [11]刘艳辉,强士中.基于性能抗震设计的钢筋混凝土桥墩变形能力公式推导及应用[J].公路交通科技,2009,26(3):94-99.LIU Yanhui,QIANG Shizhong.Derivation and application of distortion ability formula for performance-based seismic design method of RC bridge piers[J].Journal of Highway and Transportation Research and Development,2009,26(3):94-99.(in Chinese)
    [12]Andreas J.Kappos.Extension of direct displacement-based design methodology for bridges to account for higher mode effects[J].Earthquake Engng Struct.Dyn.2013:42:581-602.
    [13]黄勇,王君杰.考虑支座破坏的连续梁桥地震反应分析[J].土木工程学报,2010,43:217-223.HUANG Yong,WANG Junjie.Seismic response analysis of continuous bridges taking account of bearing failure[J].China Civil Engineering Journal,2010,43:217-223.(in Chinese)
    [14]谢旭,吴善幸.考虑支座破坏影响的防止落梁装置地震响应[J].浙江大学学报(工学版),2006,40(12):2180-2185.XIE Xu,WU Shanxing.Earthquake response of bridge restrainers considering failure of bearings[J].Journal of Zhejiang University(Engineering Science),2006,40(12):2180-2185.(in Chinese)
    [15]GB50111-2006(2009)铁路工程抗震设计规范[S].北京:中国计划出版社,2009.GB50111-2006(2009)Code for Seismic Design of Railway Engineering[S].Beijing:China Planning Press,2009.(in Chinese)
    [16]JTT 391-2009公路桥梁盆式橡胶支座[S].人民交通出版社,2009.JTT 391-2009 Pot Bearings for Highway Bridges[S].China Communications Press,2009.(in Chinese)
    [17]JTG D62-2004公路钢筋混凝土及预应力混凝土桥涵设计规范[S].人民交通出版社,2004.JTG D62-2004 Code for Design of Highway Reinforced Concrete and Prestressed Concrete Bridges and Culverts[S].China Communications Press,2004.(in Chinese)
    [18]JTG/T B02-01-2008公路桥梁抗震设计细则[S].北京:人民交通出版社,2008.JTG/T B02-01-2008 Guidelines for Seismic Design of Highway Bridges[S].Beijing:China Communication Press,2008.(in Chinese)
    [19]Park Y J,Ang A H.Mechanistic seismic damage model for reinforced concrete[J].Journal of Structural Engineering,1985,111(4):722-739.

版权所有:© 2023 中国地质图书馆 中国地质调查局地学文献中心