圆端型墩高速铁路桥梁的弹塑性地震反应分析
详细信息 本馆镜像全文    |  推荐本文 | | 获取馆网全文
摘要
为适应高速铁路的快速发展,有必要深入分析地震作用下的桥梁动力响应.文中基于有限元软件建立了圆端型墩高速铁路多跨简支梁桥体系的全桥模型,分析了结构的自振特性,分别输入不同车速、强震记录、墩高、地震强度以及不同方向地震作用组合等工况,计算了车桥系统的弹性地震响应;并通过赋予非线性梁单元弯矩?曲率关系,计算了有车/无车工况下圆端型桥墩的弹塑性地震反应.计算结果表明,设计地震作用下桥梁结构处于弹性状态,随着车速、墩高的增加,桥梁的地震响应呈上升趋势;罕遇地震作用下墩底进入弹塑性状态,列车荷载对桥墩地震响应影响较小,墩底形成塑性铰,需采取措施以保证墩底塑性铰区的安全.
As the high-speed railway is developing rapidly both in China and abroad at present,it is necessary to deeply analyze the dynamic responses of high-speed railway bridges under seismic action.In this paper,a whole-bridge model of a multi-span simply-supported high-speed railway bridge with round-ended piers is set up with the finite element software,and the natural vibration properties of the structure are analyzed.Then,different speeds,strong motion records,pier heights,earthquake accelerations and earthquake load combinations in various directions are respectively input to calculate the elastic seismic responses of the bridge.Finally,by applying the moment-curvature relationship to the nonlinear beam element,the elastoplastic seismic responses of the round-ended piers with and without train loads are calculated.The results show that,under the designed earthquake,the bridge is in the elastic stage and the seismic responses increase with the train speed and pier height,while under severe earthquakes,the pier bottom steps into the elastoplastic stage,the impact of train loads on the seismic responses of the round-ended piers is relatively slight,and plastic hinges occur at the pier bottom,so that some countermeasures should be taken to ensure the security of the plastic hinge region.
引文
[1]Xia H,Han Y,Zhang N,et al.Dynamic analysis of vehi-cle-bridge system subjected to non-uniform seismic excita-tions[J].Earthquake Engineering&Structural Dyna-mics,2006,35(19):1563-1579.
    [2]Yang Y B,Wu Y S.Dynamic stability of vehicles movingover bridges shaken by earthquakes[J].Journal of Soundand Vibration,2002,258(1):65-94.
    [3]林玉森.地震作用下高速铁路桥上列车走行性研究[D].成都:西南交通大学土木工程学院,2007.
    [4]Zhang Z C,Lin J H,Zhang Y H,et al.Non-stationary ran-dom vibration analysis for vehicle-bridge systems subjec-ted to horizontal earthquakes[J].Engineering Structures,2010,32(11):3571-3582.
    [5]Kowalsky M J.A displacement-based approach for theseismic design of continuous concrete bridges[J].Earth-quake Engineering&Structural Dynamics,2002,31(3):719-747.
    [6]Kowalsky M J,Priestley M J N,MacRae G A.Displace-ment-based design of RC bridge columns in seismic re-gions[J].Earthquake Engineering and Structural Dyna-mics,1995,24(12):1623-1644.
    [7]Kunnath S K,Ashraf E B,Taylor A W,et al.Cumulativeseismic damage of reinforced concrete bridge piers[R]∥NCEER-97-0006.New York:National Center for Earth-quake Engineering Research,State University of NewYorkat Buffalo,1997.
    [8]鞠彦忠,阎贵平,刘林.低配筋大比例尺圆端型桥墩抗震性能的试验研究[J].土木工程学报,2003,36(11):66-69.Ju Yan-zhong,Yan Gui-ping,Liu Lin.Experimental studyon seismic behaviors of large-scale RC round-ended pierswith low reinforcement ratio[J].China Civil EngineeringJournal,2003,36(11):66-69.
    [9]丁明波,陈兴冲.客运专线桥梁的抗震性能试验研究[C]∥第十八届全国桥梁学术会议.北京:人民交通出版社,2008:787-792.
    [10]中华人民共和国铁道部.新建车速300-350公里客运专线铁路设计暂行规定[S].北京:中国铁道出版社,2007.
    [11]万家.高速列车-无碴轨道-桥梁耦合系统动力学性能仿真研究[D].北京:铁道科学研究院,2005.
    [12]江见鲸,陆新征,叶列平.混凝土结构有限元分析[M].北京:清华大学出版社,2005.
    [13]European Committee for Standardization.Design provi-sions for earthquake resistance of structures,Eurocode 8(Part 2):bridge[S].Brussels:European Committee forStandardization(CEN),2004.
    [14]Priestley M J N,Park R.Strength and ductility of con-crete bridge columns under seismic Loading[J].ACIStructural Journal,1987,84(1):61-76.

版权所有:© 2023 中国地质图书馆 中国地质调查局地学文献中心