非规则公路桥梁弹塑性地震响应分析
详细信息 本馆镜像全文    |  推荐本文 | | 获取馆网全文
摘要
研究目的:桥梁工程作为震区交通线的重要枢纽工程,其抗震性能关系到抗震救灾工作的大局。多次破坏性地震一再显示了桥梁工程遭到破坏的严重后果,也一再显示了对桥梁工程进行正确抗震设计的重要性。因此,有必要对桥梁结构的抗震问题进行详尽的分析和论述。研究结论:以京良路改建工程上跨京广铁路立交桥为工程背景,对该桥进行了模态分析并验算了E1地震作用下的结构强度以及E2地震作用下的结构变形。经过验算与分析,本项目结构在E1地震作用下,结构满足强度要求;在E2作用下,塑性角区域的最大转角验算均满足规范要求;墩顶最大位移为2.59 cm,发生在人工波3激励下的5号墩墩顶并小于位移容许值;各桥墩的剪力设计值也远远小于容许剪力值。本项目结构满足设计的安全性和可靠性,为实际工程中桥梁结构的抗震验算提供了一定的参考依据。
Research purposes: The bridge project is as an important project in earthquake region,and it's seismic behavior is crucial to the earthquake relief work.Several destructive earthquakes show that once the bridge engineering is damaged,the serious consequence will occurred and it also shows the importance of bridge's seismic design.Therefore,it is necessary to analyze and discuss the bridge seismic design in details. Research conclusions:For reconstruction project of the interchange bridge across the BeijiJing-Guangzhou Railway in Jingliang Road,the modal analysis was made and the calculation was made for the structural strength under E1 earthquake effect and the structure deformation under E2 earthquake effect.It proved that the bridge could meet the requirements of strength under E1 earthquake effect.Under E2 earthquake effect,the maximum turning angle of the plastic-hinge region met the standard requirements.The maxium displacement of the pier top was 2.59 cm and it happened on the top of pier #5 under the exitation of artificial wave #3.This value was smaller than the permissible value.The designed shear forces of the piers were much smaller than the permissible value.Therefore,this bridge structure could meet the designed requirement for safely and reliability and it could be as the reference to the similar works.
引文
[1]叶爱君,管仲国.桥梁抗震[M].北京:人民交通出版社,2011.Ye Aijun,Guan Zhongguo.Seismic Design of Bridges[M].Beijing:China Communications Press,2011.
    [2]GB18306-2001,中国地震动参数区划图[S].GB 18306—2001,Seismic Ground Motion ParameterZonation Map of China[S].
    [3]GB50011—2010,建筑抗震设计规范[S].GB 50011-2010,Seismic Design Code for Buidings[S].
    [4]JTG/T B02—01—2008,公路桥梁抗震设计细则[S].JTG/T B02—01—2008,Guidelines for Seismic Designof Highway Bridges[S].
    [5]禚一,李忠献,李宁.基于FENAP平台的钢筋混凝土桥墩非线性动力分析[J].天津大学学报,2010(10):906-911.Zhuo Yi,Li Zhongxian,Li Ning.FENAP BasedNonlinear Dynamic Analysis of rc Bridge Piers[J].Journal of Tianjin University,2010(10):906-911.
    [6]禚一.钢筋混凝土桥梁精细化建模及地震碰撞分析[D].天津:天津大学,2010.Zhuo Yi.Refined Modeling and Seismic PoundingAnalysis of Reinforced Concrete Bridges[D].Tianjin:Tianjin University,2010.
    [7]JTG D63—2007,公路桥涵地基与基础设计规范[S].JTG D63—2007,Code for Design of Ground Base andFoundation of Highway Bridges and Culverts[S].
    [8]Kent D C,Park R.Flexural Members with ConfinedConcrete[J].Journal of the Structural Division,ASCE,1971(7):1969-1990.
    [9]Menegotto M,Pinto P E.Slender RC CompressedMembers in Biaxial Bending[J].Journal of StructuralEngineering,ASCE,1977(3):587-605.
    [10]窦立军,杨柏坡,刘光和.土-结构动力相互作用几个实际应用问题[J].世界地震工程,1999(4):62-68.Dou Lijun,Yang Baipo,Liu Guanghe.PracticalApplication of Soil-structure Dynamic Interaction[J].World Earthquake Engineering,1999(4):62-68.
    [11]Wolf J P.Dynamic Soil-structure Interation[M].NewJersey:Prentice-Hall,1985.
    [12]龚纬,戚冬艳.桩基础简化模型在桥梁抗震中的应用[J].铁道工程学报,2008(10):17-32.Gong Wei,Qi Dongyan.Application of SimplifiedModel of the Pile Foundation in Earthquake-resistanceof Bridge[J].Journal of Railway Engineering Society,2008(10):17-32.
    [13]王开顺,王有为,李林友.土与结构相互作用地震反应研究及实用计算[J].建筑结构学报,1986(2):64-76.Wang Kaishun,Wang Youwei,Li Linyou.SeismicResponse Analysis and Practical Calculation of Soil-structure Interaction[J].Journal of BuildingStructures,1986(2):64-76.
    [14]王菲.地基土—高层建筑相互作用的动态子结构法[D].天津:天津大学,2010.Wang Fei.Dynamic Substructure Method for Soil-Multistory Buildings Interaction System[D].Tianjin:Tianjin University,2010.

版权所有:© 2023 中国地质图书馆 中国地质调查局地学文献中心