SSI效应对大跨高墩桥梁弹塑性地震响应的影响
详细信息 本馆镜像全文    |  推荐本文 | | 获取馆网全文
摘要
基于大型有限元分析软件ANSYS,根据大跨高墩桥梁的结构特点,利用水平和转动弹簧单元建立了考虑土结相互作用的大跨高墩桥梁的有限元计算分析模型,并结合现行的《铁路工程抗震规范》,合理地选取强震记录作为地震动输入,进行了大跨高墩桥梁的弹塑性地震响应分析。分析结果表明:较软的土质条件会导致大跨高墩桥梁弹塑性地震响应的增大;地基系数的比例系数则是影响数值计算结果增大的重要因素;土结构相互作用并没有改变地震动峰值加速度PGA对超高桥墩弹塑性地震响应的影响。研究结果可为大跨超高桥墩的抗震设计和验算提供参考。
According to the characteristics of long-span and high-rise bridge,the soil-structure interaction was taken into account by using horizontal and rotational spring elements and the finite element analysis(FEA) model was established based on the ANSYS software.Meanwhile,reasonable strong seismic motion records were selected according to the applicable Code of Seismic Design for Railway Engineering,and the nonlinear time history analyses for elasto-plastic seismic response of long-span and high-rise bridge considering soil-structure interaction were carried out.The study results are obtained as follow:the flexible soil condition can lead to the enlargement of seismic response;The proportionality factor of foundation coefficient is an important factor which will enlarge the result;The effect of PGA on elasto-plastic seismic response of long-span and high-rise bridge is not affected by the soil-structure interaction.The resuts give a reference to seismic design and checking calculation of super high-rise pier.
引文
[1]FEMA 440.Improvement of nonlinear static seismic analysis procedures[R].Federal Emergency Management Agency,Washington D.C,2005.
    [2]王克海.桥梁抗震研究[M].北京:中国铁道出版社,2007.
    [3]谢旭.桥梁结构地震响应分析与抗震设计[M].人民交通出版社,2006.
    [4]Apsel R J,Luco J E.Impedance functions for foundations embedded in a layered medium:an integral equation approach[J].Earthquake Engrg.Struct Dynamics,1987,15(2):213-231.
    [5]Bielak J.Dynamic behavior of structures with embedded foundations[J].Earthquake Engrg.Struct.Dynamics,1975,3:259-274.
    [6]Crouse C B,Hushmand B,Luco J E,Wong H L.Foundation impedance functions:theory versus experiment[J].Geotech.Engrg,American So-ciety of Civil Engineers,1990,116(3).432-449.
    [7]Day S M.Seismic response of embedded foundations[C].Proc.ASCE Convention,Chicago,Illinois,October 1978 Preprint No.3450.
    [8]De Barros F C P,Luco J E.Identification of foundation impedance functions and soil properties from vibration tests of the Hualien containment mod-el[J].Soil Dyn.Earthquake Eng.,1995,14:229-248.
    [9]Kim S,Stewart J P.Kinematic soil-structure interaction from strong motion recordings[J].Geotech.&Geoenv.Engrg.,American Society of Civ-il Engineers,2003,129(4):323-335.
    [10]Liou G S,Huang P H.Effect of flexibility on impedance functions for circular foundations[J].Engrg.Mech.AmericanSociety of Civil Engineers,1994,120(7):1429-1446.
    [11]Stewart J P,Seed R B,Fenves G L.Seismic soil-structure interaction in buildings.II:Empirical findings[J].Geotech.&Geoenv.Engrg.A-merican Society of Civil Engineers,1999,125(1):38-48.
    [12]GB50111―2006,铁路工程抗震设计规范[S].中华人民共和国铁道部,北京,2006.
    [13]Ucfyber:Cross Section Analysis Software for Structural Engineers[R].University of California at Berkeley,2000.
    [14]TB1002.5―99,铁路桥涵地基和基础设计规范[S].中华人民共和国铁道部,北京,2000.
    [15]JTG/TB02-01—2008,公路桥梁抗震设计细则[S].人民交通出版社,北京,2008.

版权所有:© 2023 中国地质图书馆 中国地质调查局地学文献中心