双向地震作用下浅埋砂土电力隧道动力响应分析
详细信息 本馆镜像全文    |  推荐本文 | | 获取馆网全文
摘要
为了研究浅埋砂土地下电力隧道结构在双向地震作用下的行为反应,采用大型岩土软件FLAC3D对浅埋砂土地下电力隧道进行数值模拟。建立了双向地震作用下砂土电力电缆隧道的三维计算模型,地下水位为1 m。计算了在水平和竖直地震荷载作用下,埋地电力隧道的动力响应,并对典型截面的典型点的加速度、位移、应力进行监测。计算结果表明,在上海人工地震波作用下,电力隧道结构水平残余位移10.9 mm,竖向残余位移4.3 mm,隧道结构产生的永久变形为11.7 mm,隧道结构顶部和底部之间的水平相对位移3.6mm,竖向相对位移为4.3mm。地表水平残余变形几乎为0,竖向残余变形0.18 mm。结构自振频率45 Hz。隧道结构剪应力、主应力大小随着动荷载的输入应力幅变化很小,在1%左右;第一主应力和第三主应力的最大值在隧道侧壁C点。数值分析结果表明,在砂土地基下隧道产生剪切、拉伸破坏以及发生共振的可能性较小,侧壁是竖向抗震的薄弱环节。
In order to study the seismic response of power tunnel shallow buried in soft soil subjected to the horizontal and vertical earthquake,the large-scale geotechnical software FLAC3 D was adopted for the numerical calculation.A threedimensional model was established,and the ground water table is 1m underground.The accelerations,displacements and stresses of typical points of typical sections are monitored in the entire process of earthquake.The results shows that under Shanghai artificial seismic wave,the residual horizontal displacement of the tunnel is 10.9mm,and vertical displacement is 4.3mm,and the permanent deformation of the tunnel is 11.7mm.The relative horizontal displacement of the roof and bottom of the tunnel is 3.6mm,and the relative vertical displacement of the roof and the bottom is 4.3 mm.The residual horizontal displacement of the ground is nearly 0 and vertical displacement is0.18 mm.The natural frequency of tunnel is 45 Hz.The whole shear stress and the principle stresses change a little with the input of dynamic loads,and the maximum stress amplitude is about 1%.The maximum of the first and third principal stresses appear at side wall.In conclusion the probability of shear,tensile and resonance of tunnel failure is small.The side wall is the weakness under earthquake.
引文
[1]Han Yang,Sun Shaoping and Cui Yuping.Some Parameters for Seismic Design and Analysis of Buried Pipelines,ASCE,2004
    [2]Yasuo Ogawa,Takeshi Koike.Structural design of buried pipelines for severe earthquakes[J].Soil Dynamics and Earthquake Engineering,2001,21(1):1999-2009
    [3]左熹,陈国兴.地下隧道地震反应数值模拟分析[J].防灾减灾工程学报,2007,27(s):311-314
    [4]邱法维,钱稼如,陈志鹏.结构抗震实验方法[M].北京:科学出版社,2000
    [5]庄海洋.土-地下结构非线性动力相互作用及其大型振动台试验研究[D].南京:南京工业大学,2006
    [6]王国波.软土地铁结构三维地震响应理论及其计算方法的研究[D].上海:同济大学,2007
    [7]王国波,杨林德,马险峰,等.地铁车站结构三维地震响应及土非线性分析[J].地下空间与工程学报,2008,4(2):234-237
    [8]唐益群,栾长青,张曦,等.地铁振动荷载作用下隧道土体变形数值模拟[J].地下空间与工程学报,2008,4(1):105-110
    [9]李建波,陈健云,李静,等.软土浅埋地铁车站地震响应的多因素影响分析[J].地下空间与工程学报,2009,5(2):395-401,405
    [10]中华人民共和国交通部.公路抗震设计规范.JTJ 044-89[S].北京:人民交通出版社。1989
    [11]刘妮娜,门玉明.彭建兵.地震荷载作用下地铁盾构隧道动力响应分析[J].水文地质工程地质,2010,(4):58-62
    [12]Y.nassira.H.RAJAIE.R.T.Faal.Three dimensional vibration analysis of a buried pipeline with slip conditions[J]Soil Dynamic and Earthquake Engineering 31(2011)1629-1639
    [13]李洪煊,蔡新,武颖利.水下公路隧道结构地震响应分析[J].地下空间与工程学报,2010,6(5):952-957
    [14]李海波,马行东,邵蔚.地震波参数对地下岩体洞室位移特性的影响分析[J].岩石力学与工程学报,2005,24(1):4627-4634
    15]Ulas Cilingir,S.P.Gopal Madabhushi.A model study on the effects of input motion on the seismic behavior of tunnels[J]Soil Dynamics and Earthquake Engineering(31)2011 452-462

版权所有:© 2023 中国地质图书馆 中国地质调查局地学文献中心