一种抑制铁路桥梁地震反应的半主动控制新策略
详细信息 本馆镜像全文    |  推荐本文 | | 获取馆网全文
摘要
为了有效降低桥梁在震后出现的较大梁体及支座位移,提出变论域自适应模糊分散(VAFD)控制策略。首先设计出可以调节模糊控制策略的输入和输出变量论域的变论域自适应模糊(VAF)主动控制器;然后将改进的剪切最优(MCO)半主动控制算法整合到VAF控制器中,并结合分散控制策略设计出VAFD/MCO半主动控制器;最后以一座铅芯橡胶支座隔震铁路桥梁为算例,分别对其在无控制、Passive-on、VAFD/MCO、AFD/MCO和VAFG/MCO控制下的评价指标进行仿真计算。结果表明:VAFD/MCO策略的减震效果比Passive-on、AFD/MCO及VAFG/MCO策略的好;VAFD/MCO策略不占用计算资源,可用于实时振动控制。
In order to effectively reduce the larger displacement of girder and bearing in railroad bridges after earthquakes,a variable universe adaptive fuzzy decentralized(VAFD) controller was proposed. Firstly,a variable universe adaptive fuzzy(VAF) active controller was designed,which can online adjust the universe of input and output variables in fuzzy logic control strategy. Secondly,a VAFD / MCO semi-active controller for MRD was designed by integrating the modified clipped optimal(MCO) semi-active control algorithm into the VAF controller and using decentralized control strategy. Finally,taking the railroad continuous girder bridges isolated by lead rubber bearing as an example,the evaluation criteria under non-control,Passive-on,VAFD / MCO and AFD / MCO control strategies were calculated respectively. The results show that the VAFD / MCO strategy has better reduction effect than Passive-on,AFD / MCO and VAFG / MCO strategies. The VAFD / MCO strategy does not occupy computation resource and can be used for real-time vibration control.
引文
[1]SAHASRABUDHE S S,NAGARAJAIAH S.Semi-active control of sliding isolated bridges using MR dampers:an experimental and numerical study[J].Earthquake Engineering and Structural Dynamics,2005,34(8):965-983.
    [2]SPENCER B F,NAGARAJAIAH S.State of the art of structural control[J].Journal of Structural Engineering,2003,129(7):845-856.
    [3]SYMANS M D,KELLY S W.Fuzzy logic control of bridge structures using intelligent semi-active seismic isolation systems[J].Earthquake Engineering and Structural Dynamics,1999,28(1):37-60.
    [4]DAS T,KAR I N.Design and implementation of an adaptive fuzzy logic-based controller for wheeled mobile robots[J].IEEE Transactions on Control Systems Technology,2006,14(3):501-510.
    [5]ZHOU L,CHANG C C,WANG L X.Adaptive fuzzy control for nonlinear building-magnetorheological damper system[J].Journal of Structural Engineering,2003,129(7):905-913.
    [6]LI H X,MIAO Z H,WANG J Y.Variable universe adaptive fuzzy control on the quadruple inverted pendulum[J].Science in China Series E:Technological Sciences,2002,45(2):213-224.
    [7]LIU Z L,SU C Y,SVOBODA J.Control of wing rock phenomenon with a variable universe fuzzy controller[C]//Proceedings of the 2004 American Control Conference.Washington:IEEE Computer Society,c2004:1719-1724.
    [8]HOU B B,GAO Y.Variable universe fuzzy controller with correction factors for ball and beam system[C]//Proceedings of the 3rd International Workshop on Intelligent Systems and Applications.Washington:IEEE Computer Society,c2011:1-4.
    [9]刘云峰,刘华峰.基于变论域的导弹电液伺服机构自适应模糊滑模控制[J].上海航天,2009,26(6):25-30.LIU Yunfeng,LIU Huafeng.Adaptive fuzzy sliding mode control for missile electro-hydraulic servo mechanism based on variable universe[J].Aerospace Shanghai,2009,26(6):25-30.
    [10]SPENCER B F,DYKE S J,SAIN M K,et al.Phenomenological model for magneto-rheological dampers[J].Journal of Engineering Mechanics,1997,123(3):230-238.
    [11]HUANG S J,LIN W C.Adaptive fuzzy controller with sliding surface for vehicle suspension control[J].IEEE Transactions on Fuzzy Systems,2003,11(4):550-559.
    [12]YAGER R R,KREINOVICH V.Universal approximation theorem for uniform-based fuzzy systems modeling[J].Fuzzy Sets and Systems,2003,140(2):331-339.
    [13]WU H,MIZUKAMI K.Lyapunov stability theory and robust control of uncertain descriptor systems[J].International Journal of Systems Science,1995,26(10):1981-1991.
    [14]DYKE S J,SPENCER B F,SAIN M K,et al.Modeling and control of magneto-rheological dampers for seismic response reduction[J].Smart Materials and Structures,1996,5(5):565-575.

版权所有:© 2023 中国地质图书馆 中国地质调查局地学文献中心