地震作用下全浮漂大跨斜拉桥耗能减震控制研究
详细信息 本馆镜像全文    |  推荐本文 | | 获取馆网全文
摘要
以某实际全浮漂大跨斜拉桥为研究应用对象,探讨了全浮漂大跨斜拉桥阻尼器的布置原则,考虑桩-土的相互作用,建立了全桥空间有限元分析模型,针对该非比例阻尼体系,通过基于应变能理论的振型阻尼分别考虑上部结构阻尼、下部结构阻尼和阻尼器阻尼,从而实现结构不同部分不同阻尼引入到有限元分析模型。然后进行了黏滞阻尼器参数优化,得到了最优阻尼系数和最优阻尼速度指数,并进行减震效果分析。研究结果表明:采用黏滞阻尼器可有效控制结构的地震响应,主塔顶位移、主梁位移和主塔底弯矩分别减小为普通全浮漂体系的60.4%、56.7%、71.8%;随着阻尼系数增加和阻尼速度指数的减小,梁端位移、塔顶位移和阻尼器位移减小,主塔墩底弯矩单调减少,当阻尼系数增加和阻尼速度指数的减小到一定值时主塔墩底弯矩控制效果基本稳定。
The arrangement principle of dampers for long span cable-stayed bridges as a full-floating system was discussed based on one actual long span cable-stayed bridge and considering pile-soil interaction,its spatial finite element model was built. Based on modal dampings in the strain energy theory,the dampings of superstructure,substructure and dampers were considered,so different dampings of different components were induced in the FE model of the bridge.Then,the parametric optimization of fluid viscous dampers was performed. The optimal damping velocity index and the optimal damping coefficient were obtained. Furthermore,the effect of energy dissipation on the seismic response of the bridge under earthquake was analyzed. The results showed that the top displacement of the main tower,the displacement of girder,and the bending moment at the bottom of the main tower of the bridge with viscous dampers decrease to 60. 4%,56. 7%,and 71. 8% of those of an ordinary bridge as a full-floating system,respectively; with increase in damping coefficient and decrease in damping velocity index,the displacements of girder,the main tower and dampers decrease and the bending moment at the bottom of the main tower monotonously decreases; the control effect on the bending moment at the bottom of the main tower is basically stable when increase in damping coefficient and decrease in damping velocity index reach certain values.
引文
[1]范立础.桥梁抗震[M].上海:同济大学出版社,1997.
    [2]Kim J,Choi H,Min K W.Performance-based design of added viscous dampers using capacity spectrum method[J].Journal of Earthquake Engineering,2003,7(1):1-24.
    [3]Singh M P,Verma N P,Moreschi L M.Seismic analysis and design with maxwell dampers[J].Journal of Engineering Mechanics,2003,129(3):273-282.
    [4]Li B,Liang X W.Design of supplemental viscous dampers in inelastic SDOF system based on improved capacity spectrum method[J].Structural Engineering and Mechanics,2007,27(5):541-554.
    [5]Pekcan G,Mander J B,Chen S S.Fundamental considerations for the design of non-linear viscous dampers[J].Earthquake Engineering and Structural Dynamics,1999,28(11):1405-1425.
    [6]Lin W H,Chopra A K.Earthquake response of elastic SDF systems with non-linear fluid viscous dampers[J].Earthquake Engineering and Structural Dynamics,2002,31(9):1623-1642.
    [7]Li Hui,Liu Jin-long,Ou Jin-ping.Seismic response control of a cable-stayed bridge using negative stiffness dampers[J].Structural Control and Health Monitoring,2011,18:265-288.
    [8]叶爱君,胡世德,范立础.超大跨度斜拉桥的地震位移控制[J].土木工程学报,2004,37(12):38-43.YE Ai-qun,HU Shi-de,FAN Li-chu.Seismic displacement control for super-long-span cable-stayed bridges[J].China Civil Engineering Journal,2004,37(12):38-43.
    [9]亓兴军,李小军.大跨飘浮体系斜拉桥减震控制研究[J].振动与冲击,2007,26(3):85-88.QI Xing-jun,LI Xiao-jun.Study on seismic response control for a long-span floating cable-stayed bridge[J].Journal of Vibration and Shock,2007,26(3):85-88.
    [10]陈永祁,耿瑞琦,马良喆.桥梁用液体黏滞阻尼器的减振设计和类型选择[J].土木工程学报,2007:40(7):55-61.CHEN Yong-qi,GENG Rui-qi,MA Lian-zhe.Design and selection of fluid viscous devices for shock control ofbridges[J].China Civil Engineering Journal,2007:40(7):55-61.
    [11]陈永祁,杜义新.液体黏滞阻尼器在结构工程中的最新进展[J].工程抗震与加固改造,2006,28(3):65-72.CHEN Yong-qi,DU Yi-xin.Latest development of the fluid viscous damper in civil engineering[J].Earthquake Resistant Engineering and Retrofitting,2006,28(3):65-72.
    [12]建設省道路橋の免震設計法マニュアル案[s].1992.

版权所有:© 2023 中国地质图书馆 中国地质调查局地学文献中心