非一致激励对三塔自锚式悬索桥地震响应的影响
详细信息 本馆镜像全文    |  推荐本文 | | 获取馆网全文
摘要
作为一种新型的桥梁结构形式,三塔自锚式悬索桥的静动力性能较传统双塔自锚式悬索桥更为复杂。由于其跨越能力较大,抗震分析中地震动空间效应通常不能忽略。以某三塔自锚式悬索桥为工程背景,根据实际场地条件拟合得到空间多点地震动时程,基于时程分析法研究了波传播效应、局部场地效应、失相干效应等地震动空间效应对三塔自锚式悬索桥地震响应的影响规律。研究结果表明:非一致激励会使得主塔内力增大、主塔索鞍抗滑安全系数下降、主塔纵向加速度和变形增大、主梁内力增大。因此,对于三塔自锚式悬索桥地震响应分析时应考虑多点非一致激励的影响。进一步研究表明,非一致激励对于各构件响应的影响程度不尽相同;即使对于同一构件,不同地震动空间效应的影响规律也相差较大。综上所述,非一致激励的影响规律十分复杂,需要后续更深入地探讨非一致激励对多塔悬索桥地震响应的影响机理。
Here,a real project of a three-tower self-anchored suspension bridge( TSSB) was taken as a background. Spatially varying non-stationary ground motions were simulated according to real site condition. Based on the finite element model of TSSB,the time history method was used to discuss effects of ground motion spatial variations,such as,wave passage effect,coherency loss effect and local site effect. On seismic response of TSSB,respectively. Results showed that spatially non-uniform ground motions increase seismic response of towers and decreases safety factor against cable sliding; it is necessary to consider effects of ground motion spatial variations in seismic design of TSSB. Further studies showed that the levels of the impacts of spatially ground motion on each component are different and influence rules of different spatial effects are also quite different; the influence laws of spatially ground motion on seismic response of TSSB are very complicated,more in-depth study on this topic is needed.
引文
[1]杨进.多塔多跨悬索桥应用于海峡长桥建设的技术可行性与技术优势[J].桥梁建设,2009(2):36-39.YANG Jin.Technical feasibility and advantages of applying multi-tower and multi-span suspension bridge to construction of long bridge across straits[J].Bridge Construction,2009(2):36-39.
    [2]房贞政,张超,陈永健.三塔自锚式悬索桥动力特性及影响参数分析[J].地震工程与工程振动,2010,36(4):97-102.FANG Zhen-zheng,ZHANG Chao,CHENG Yong-jian.Dynamic characteristics analysis and parametric study of selfanchored suspension bridge with three towers[J].Journal of Earthquake Engineering and Engineering Vibration,2010,36(4):97-102.
    [3]杨庆山,刘文华,田玉基.国家体育场在多点激励作用下的地震反应分析[J].土木工程学报,2008,41(2):35-41.YANG Qing-shan,LIU Wen-huo,TIAN Yu-ji.Response analysis of national stadium under specially variable earthquake ground motions[J].China Civil Engineering Journal,2008,41(2):35-41.
    [4]白凤龙,李宏男.地震动空间变化效应对大跨度桁架拱反应的影响[J].工程力学,2011,28(10):111-117.BAI Feng-long,LI Hong-nan.The influence of ground motion spatial variation effect on seismic response of long span trussed arch[J].Engineering Mechanics,2011,28(10):111-117.
    [5]王岱,屈铁军,梁建文.地震动空间相关性对地下连续管线的影响[J].振动工程学报,2010,23(2):145-160.WANG Dai,QU Tie-jun,LIANG Jian-wen.Effect of spatial coherence of seismic ground motions on underground continuous pipeline[J].Journal of Vibration Engineering,2010,23(2):145-160.
    [6]Bi K,Hao H,Chouw N.3D FEM analysis of pounding response of bridge structures at a canyon site to spatially varying ground motions[J].Advances in Structural Engineering,2013,16(4):619-640.
    [7]杜修力.水工建筑物抗震可靠度设计和分析用的随机地震输入模型[J].地震工程与工程振动,1998,18(4):76-81.DU Xiu-li,A random seismic input model used in seismic reliability design and analysis of hydraulic buildings[J].Earthquake Engineering and Engineering Vibration,1998,18(4):76-81.
    [8]Hao H,Oliveira C S,Penzien J.Multiple-station ground motion processing and simulation based on smart-1 array data[J].Nuclear Engineering and Design,1989,111(3):293-310.
    [9]Thrainsson H,Kiremidjian A S,Winterstein S R.Modeling of earthquake ground motion in the frequency domain[R].Department of Civil and Environmental Engineering Stanford University,2000.
    [10]Wilson E L.Three-Dimensional static and dynamic analysis of structures[M].Berkley,California:Computers and Structures,2004.
    [11]张超,房贞政.塔-梁纵向连接方式对多塔自锚式悬索桥的影响规律研究[J].福州大学学报(自然科学版),2013,41(4):539-543.ZHANG Chao,FANG Zhen-zheng.The influence law of longitudinal constraints between tower and girder on seismic performance of self-anchored suspension bridge with multitower[J].Journal of Fuzhou University(Natural Science Edition),2013,41(4):539-543.

版权所有:© 2023 中国地质图书馆 中国地质调查局地学文献中心