土-箱基-框架结构动力相互作用大比例模型野外试验研究
详细信息 本馆镜像全文    |  推荐本文 | | 获取馆网全文
摘要
通过野外大比例(1∶2)结构模型动力试验,研究了土与箱基及框架结构动力相互作用。分别用脉动和牵引释放法测试了试验模型的自振频率及阻尼比,通过三维有限元计算理论值与现场实测值的对比发现,考虑土-结构动力相互作用(SSI)时模型自振频率比不考虑SSI作用时模型第一阶自振频率最大降低8.5%。从牵引释放试验中基础测点和地面测点速度频谱对比可以发现,地面测点振动以纵向运动为主,并且与土体特征频率接近的高频分量得到加强。由近场地面爆破振动试验可知,对于高柔框架结构,其顶部速度反应主要是由基础转动引起的摇摆分量组成,上部结构弹性变形次之,基础平动分量最小。试验为进一步研究具有埋置基础的土-结构动力相互作用提供了计算实例和丰富的试验对比数据。
A large-scale (1: 2) field model experiment of dynamic soil-box foundation-structure interaction was carried out. Based on the pulsation and release tests, the nature frequency and damping ratio of the model were tested. By comparing the differences of nature frequency between experimental and three-dimensional finite element method analysis results, it is found that the fundamental nature frequency of the system considering soil-structure interaction (SSI) is about 8.5% less than that of the fixed-base structure. Comparison of the velocity spectra at the measuring points on the foundation and on the ground surface shows that the main portion of the velocity response on the ground surface is longitudinal and the high frequency component close to the soil natural frequency is amplified. The results of near-field blasting vibration test show that the main portion of the velocity response at the top of flexible super structure is rocking, followed by elastic deformation. The swing response is very small. The experiment provides test data for further numerical modeling of soil-structure interactions.
引文
[1]Wu Wen-Hwa,Smith H Allison.Efficient modal analysis for structures with soil-structure interaction[J].Earthquake Engineering and Structure Dynamic,1995,24:283~299.
    [2]Aviles Javier.Effects of foundation embedment during building-soil interaction[J].Earthquake Engineering and Structure Dynamic,1998,27:1523~1540.
    [3]Wolf J P.Dynamic soil-structure interaction[M].NJ:Prentice-Hall,Englewood Cliffs,1985.
    [4]Kellezi L.Local transmitting boundaries for transient elastic analysis[J].Soil Dynamics and Earthquake Engineering,2000,19:533~547.
    [5]廖振鹏.工程波动理论导论(第2版)[M].北京:科学出版社,2002.Liao Zhenpeng.Introduction to wave motion theories in engineering(the second edition)[M].Beijing:Science Publishing House,2002.(in Chinese)
    [6]Kim Seunghyun,Strwart Jonathan P.Kinematic soil-structure interaction from strong motion recordings[J].Journal of Geotechnical and Environmental Engineering,ASCE,2003,129(4):323~335.
    [7]Toshio Kobayashi,Satoshi Kan.System identification of the Hualien LSST model structure[J].Earthquake Engineering and Structure Dynamic,1997,26:1157~1167.
    [8]Srinivasan M G,Kot C A,Hsieh B J.Determination of soil impedance functions from vibration-test response of a circular foundation[J].Soil Dynamics and Earthquake Engrg,1991,10:212~227.
    [9]陈跃庆,吕西林,李培振.分层土-基础-高层框架结构相互作用体系振动台模型试验研究[J].地震工程与工程振动2001,3:104~112.Chen Yueqing,Lu Xilin,Li Peizhen.Shaking table testing for layered soil-foundation-structure interaction system[J].Earthquake Engineering and Engineering Vibration,2001,3:104~112.(in Chinese)
    [10]尚守平,朱志辉,涂文戈.土-箱形基础-结构动力相互作用的模态试验分析[J].湖南大学学报,2004,5:66~73.Shang Shouping,Zhu Zhihui,Tu Wenge.Model experimentation analysis for soil-box foundation-structure dynamic interaction system[J].Journal of Hunan University,2004,5:66~73.(in Chinese)
    [11]吴世明.土动力学[M].北京:中国建筑工业出版社,2000.12.Wu Shiming.Soil dynamics[M].Beijing:China Architecture&Building Press,2000.12.(in Chinese)

版权所有:© 2023 中国地质图书馆 中国地质调查局地学文献中心