特高压输电线路直线塔结构分析与试验
详细信息 本馆镜像全文    |  推荐本文 | | 获取馆网全文
摘要
为提高交流特高压输电线路的安全稳定性,计算分析了我国第一基1000kV交流特高压输电线路试验塔ZM2。通过该塔结构线性与几何非线性静力分析及动力特性分析,并结合真型塔试验,验证了该铁塔设计的可靠性,还对该铁塔在控制工况下的破坏过程进行分析。结果表明:ZM2试验塔结构数值分析结果与试验结果基本一致,数值分析可以很好地模拟结构荷载行为;该试验塔结构性能良好,能满足设计要求;ZM2塔结构几何非线性不明显,设计分析时可不考虑其结构非线性问题;塔身瓶口是ZM2铁塔的薄弱部位,应加强这一部位的设计分析。
The suspension tower type ZM2 is the first experimental tower for 1 000 kV ultra-high-voltage(UHV)AC,and will serve the first UHV overhead transmission line in China.Because of the heavier electrical and mechanical load,the UHV towers are higher than the extra-high-voltage(EHV)towers,the structural safety and reliability are critical for these transmission lines.The structural performances of ZM2 are investigated by numerical simulation and experimental test in this paper.Firstly,the static and dynamic behaviors of the experimental tower type ZM2,which was designed according to the limit state method,are calculated by employing the finite element method considering geometrically nonlinear behavior.Then,the experimental tests are conducted under various typical load cases.The simulated structural performances are verified and the structural failure modes are investigated by full-scale test at the Tower Test Station in Beijing.The calculated results from finite element analysis are very reasonable comparing with the code-based and experiment-based ones.According to the tower destructive test,the failure mode and ultimate capacity under the 60 wind load case reveal that the weak part of ZM2 is around the tower bottleneck.Through the static structural analysis of linear and geometrical nonlinear and the dynamic analysis of fundamental vibration characteristic,associating with the results of full-scale testing,it is proved that the design of Chinese UHV steel tower is reliable.By the process of destruction test under the control load case,it is indicated that the results of the numerical analysis are related with those of tests,and the numerical analysis can well simulate the structure responses.From the above studies,it can be concluded that the ZM2has a good structural bearing performance,and the practical engineering needs can be satisfied;the geometrical nonlinear of ZM2 is not obvious,so the effect of geometrical nonlinear can be neglected during the tower designing.The bottleneck of tower ZM2 should be designed and strengthen elaborately.
引文
[1]刘振亚.特高压电网[M].北京:中国经济出版社,2005.
    [2]虞菊英.我国特高压交流输电研究现状[J].高电压技术,2005,31(12):23-25.YUJu-ying.Analysis of research on UHV AC transmission in China[J].High Voltage Engineering,2005,31(12):23-25.
    [3]万启发.二十一世纪我国的特高压输电[J].高电压技术,2000,26(6):12-13.WAN Qi-fa.UHVpower transmissionin China in21th century[J].High Voltage Engineering,2000,26(6):12-13.
    [4]张文亮,胡毅.发展特高压交流输电,促进全国联网[J].高电压技术,2003,29(8):20-22.ZHANG Wen-liang,HU Yi.To develop UHV ACpower trans-mission and advance the united power network in China[J].High Voltage Engineering,2003,29(8):20-22.
    [5]谢强,张勇,李杰.华东电网500kV任上5237线飑线风致倒塔事故调查分析[J].电网技术,2006,30(10):59-63.XIE Qiang,ZHANG Yong,LI Jie.Investigation ontower collapses of500kVrenshang5237transmissionline caused by downburst[J].Power System Technology,2006,30(10):59-63.
    [6]胡毅.输电线路大范围冰害事故分析及对策[J].高电压技术,2005,31(4):14-15.HU Yi.Analysis and countermeasures for large area accident cause by icing on transmission line[J].High Voltage Engineer-ing,2005,31(4):14-15.
    [7]Safi M,Horr A M.Spectral dynamic analysis of power trans-mission towers using ANN imperfection Simulator[J].IEEE Transactions on Power Delivery,2004,19(4):1907-1912.
    [8]Trainor P G S,Popplewell N,Shah A H,et al.Estimation of fundamental dynamic characteristics of transmission towers[J].IEEE Trans on PAS,1985,104(3):681-689.
    [9]Yamagishi H,Murooka M,Urushibara H.Mechanical test re-sults of full scale1000kV transmission towers[C].CIGRE.Paris,French,1990,22-301:1-6.
    [10]Riera J D,R C R de Menezes,Dasilva V R,et al.Evaluation of the probability distribution of the strength of transmission line steel towers based on tower test results[C].CIGRE.Par-is,French,1990,22-305:1-5.
    [11]Heydt G T,William MGrady.Rapid methods for transmission tower structure analysis and design[J].IEEE Trans on PAS,1975,94(4):1223-1231.
    [12]Jun WLee,Gordon Jensen H.Transmission tower limited a-nalysis and design by linear programming[J].IEEE Trans on PAS,1981,100(4):1999-2007.
    [13]Kravitz R A.Transmission tower analysis and designin review[J].IEEE Trans on PAS,1982,101(11):4350-4357.
    [14]Mathur R K,Shah A H,Traior P G S,et al.Dynamics of a guyed transmission tower system[J].IEEE Transactions onPower Delivery,1987,2(3):908-916.
    [15]陈永强,龙小乐,鲍务均.输电自立塔多塔腿有限元分析[J].武汉大学学报(工学版),2004,37(2):53-56.CHEN Yong-qiang,LONG Xiao-le,BAO Wu-jun.Finite ele-ment analysis of transmission towers[J].Engineering Journal of Wuhan University,2004,37(2):53-56.
    [16]沈炜良,陈家权,徐家园,等.架空送电线路铁塔有限元分析[J].广西电力,2003(3):6-10.
    [17]杨万里,龙小乐,鲍务均.输电杆塔的结构设计分析[J].武汉水利电力大学(宜昌)学报,1999,21(1):58-64.YANG Wan-li,LONG Xiao-le,BAO Wu-jun.Structural de-sign and analysis of power transmission tower[J].J of Univ of Hydr&Elec Eng(Yichang),1999,21(1):58-64.
    [18]聂国一.自立式铁塔受力计算的准确性统计分析[J].电力建设,1994,15(13):42-46.
    [19]赵滇生,金三爱.有限元模型对输电塔架结构动力特性分析的影响[J].特种结构,2004,21(3):8-11.
    [20]马宏伟,罗英,彭福明,等.自重对输电铁塔的风振响应和地震响应分析[J].长安大学学报(自然科学版),2002,22(6):58-60.MA Hong-wei,LUO Ying,PENG Fu-ming,et al.Dead weight’s influence on seismic response and wind vibration re-sponse of transmissioniron-tower[J].Journal of Chang’an U-niversity(Natural Science Edition),2002,22(6):58-60.

版权所有:© 2023 中国地质图书馆 中国地质调查局地学文献中心