基于Hyperion影像的涩北气田油气信息提取
详细信息 本馆镜像全文    |  推荐本文 | | 获取馆网全文
摘要
对柴达木地区涩北气田地质地理环境下的蚀变矿物进行分析,结合卫星高光谱遥感数据Hyperion的图谱,对已知气田区与背景区光谱特征进行相关分析,确定了932.64~1346.25nm与2002.06~2385.5nm为油气信息识别的有利波长范围;利用光谱角制图(SAM)技术提取了涩北气田油气的空间分布信息和台吉乃尔含气构造等远景区,为高光谱遥感油气勘探提供了有效技术方法与途径。
This paper studied the altered minerals under the geological and geographical conditions of the Sebei Gas Field in Qaidam Basin, and analyzed the relationship of the spectral character between the known gas field and the background district in the study area with the help of the illustration of Hyperion Imaginary and the satellite hyperspectral remote sensing data. On such a basis, 932.64~1 346.25 nm and 2 002.06~2 385.5 nm were confirmed as the optimal spectral ranges for distinguishing the information of background and that of target. Then the oil and gas special distribution information was extracted by the SAM (Spectral Angle Mapper) method. As a result, some promising gas fields such as the Taijnar gas-bearing structure were recognized, thus providing an effective method and approach to oil and gas exploration with the satellite hyperspectral remote sensing technology.
引文
[1]孙成权,张欣利.遥感技术在油气勘探中的应用[J].遥感技术与应用,1992,7(2):32-38.
    [2]Saunders D F,Burson K R,Thompson C K.Model for Hydrocar-bon Microseepage and Related Near-surface Alterations[J].AAPG BULL,1999,83(1):170-185.
    [3]郭德方.烃类微渗漏晕及其信息提取[J].环境遥感,1995,10(2):124-131.
    [4]刘东海,邱晓红.遥感技术在油气勘探中的应用及研究进展[J].石油勘探与开发,1992,19(2):44-48.
    [5]郭德方.遥感技术直接找油理论基础及其实践[J].环境遥感,1995,10(1):45-51.
    [6]朱振海,王文彦,彭希龄.遥感技术直接探测烃类微渗漏的方法研究[J].科学通报,1990,(16):59-62.
    [7]余琪祥,黄泽光,阳安成.遥感技术在油气非地震勘探中的应用[J].遥感信息,1998,(4):22-24.
    [8]王桂宏,张友焱,岳兵,等.柴达木盆地第四系气田构造遥感信息提取[J].石油勘探与开发,1998,25(4):7-9.
    [9]于五一,齐小平,邹立群.多源遥感数据在鄂尔多斯盆地黄土塬油气勘探应用中的评价[J].国土资源遥感,2000,(4):34-38.
    [10]侯卫国.塔北地区化探遥感技术探测油气藏的研究[J].物探化探计算技术,2002,24(1):6-11.
    [11]谢娟,杨军,张骏.柴达木盆地环境地质的调查及评价[J].西北地质,2001,34(3):29-34.
    [12]李宾元,王成武.青海台南—涩北气田出砂机理及防砂技术研究[J].西南石油学院学报,2000,22(1):40-43.
    [13]李小林,马建青,高忠咏,等.柴达木盆地土壤积盐特点及对工程建设的影响[Z].青海国土经略,2004,(4):30-32.
    [14]周翥红,周瑞年,管志强.柴达木盆地东部第四系气源岩地化特征与生物气前景[J].石油勘探与开发,1994,21(2):30-36.
    [15]管仲,田庆久,王向成.基于ALI数据的柴达木油气区含铁矿物制图[J].国土资源遥感,2006,(3):43-46.
    [16]Richard Beck.EO-1User Guide v.2.3[Z].2003.http://eo1.usgs.gov&http://eo1.gsfs.nasa.gov.
    [17]谭炳香,李增元,陈尔学,等.EO-1Hyperion高光谱数据的预处理[J].遥感信息,2005,(6):36-41.
    [18]甘甫平,王润生.遥感岩矿信息提取基础与技术方法研究[M].北京:地质出版社,2004.
    [19]许卫东.地物光谱匹配模型比较研究[J].红外与毫米波学报,2005,24(4):296-300.
    [20]Wang Yunpeng,Ding Xuan.Hydrocarbon Alteration Characteristics of Soils and Mechanism for Detection by Remote Sensing in East Si-chuan Area[J].China Natural Resources Research,2000,(4):295-305.
    [21]党福星.多光谱定量化分析技术在矿化蚀变信息提取中的应用研究[J].国土资源遥感,1998,(4):86-92.
    [22]杨金中,方洪宾,张玉君,等.中国西部重要成矿带遥感找矿异常提取的方法研究[J].国土资源遥感,2003,(3):50-53.
    [23]Bernard E,Hubbard,James K Crowley.Mineral Mapping on the Chilean?Bolivian Altiplano Using Co-orbital ALI,ASTER and Hyperion Imagery:Data Dimensionality Issues and Solutions[J].Remote Sensing of Environment,2005,(99):173-186.

版权所有:© 2023 中国地质图书馆 中国地质调查局地学文献中心