三峡引水工程秦巴段输水隧洞稳定性分析
详细信息 本馆镜像全文    |  推荐本文 | | 获取馆网全文
摘要
三峡引水工程秦巴段隧洞总长占线路总长的80%。为了分析隧洞施工及运营中可能发生的工程地质问题,在地质调查、地应力测量和岩石力学参数测试的基础上,利用Ansys有限元软件对引水工程北部不同深度、不同截面形态的隧洞围岩的应力重分布情况进行了模拟计算,得到了圆形隧洞、城门形隧洞和马蹄形隧洞围岩的应力分布结果。利用Hoek-Brown强度准则,得到了隧洞围岩的强度/应力比值,进而对不同深度、不同截面形态的隧洞围岩的稳定性进行了分析。初步认为:隧洞埋深小于1000m时,应优先考虑圆形隧洞和马蹄形隧洞;埋深大于1000m时,应优先考虑城门形隧洞。这项研究成果为引水工程深埋隧洞的设计提供了参考依据。
The total length of the Qinling-Daba segment of the Three Gorges Water Diversion Project accounts for 80% of the total length of the project line. In order to analyze the problems of engineering geology that may happen during tunnel construction and operations, geological surveys, ground stress measurements and rock mechanical tests were made, and on that basis, simulation calculation were performed of the stress redistribution of surrounding rocks of the tunnel with the circle- straight-wall-top-arch- and horse's hoof-shaped cross sections at different depths in the northern part of the water diversion project by using the Ansys finite element software. According to the Hoek-Brown strength criterion, the rock strength/stress ratio was obtained. Furthermore, the stability of the surrounding rocks of the tunnel with different cross sections at different depths was analyzed. It is preliminarily considered that in choice of the tunnel cross section in the design of the Three Gorges Water Diversion Project we should give priority to the circle- and hoof-shaped tunnels when the tunnel depth is <1000 m and to a tunnel with a straight-wall-top-arch section when the tunnel depth is >1000 m. This research achievement provides reference for the design of deep-buried tunnels of a water diversion project.
引文
[1]王思敬,黄鼎成.中国工程地质世纪成就[M].北京:地质出版社,2004:343-354.
    [2]Chen Chengzong.The prediction technology on tunnel geology[J].World tunnel,1995,6:74-79.
    [3]Cook N G W,Heok E.Rock mechanics appied to the study of rockbursts[J].J.S.Afr.Inst.Min.Metall.,1996,66:435-528.
    [4]Couchand I,Cotthem A V,Hick S.The Belgian High-speed railway tunnel project[C]//Hack,et al.Engineering Geology for Infrastructure Planning in Europe.Berlin:Springer,2004:475-484.
    [5]Eder S,Poscher G,Kohl B.Tunnelling in urbanised area—geotechnical case studies at different project stages[C]//Hack,et al.Engineering Geology for Infrastructure Planning in Europe.Berlin:Springer,2004:435-443.
    [6]Egger P.Design and construction aspects of deep tunnels(with particular emphasis on strain softening rocks)[J].Tunneling and Underground Space Technology,2000,(4):403-408.
    [7]Gu Mingcheng,He Faliang,Chen Chengzong.The study on the rockburst in Qingling tunnel[J].Chinese Journal of Rock Mechanics and Engineering,2002,21(9):1324-1329.
    [8]Marinos V P,Aggistalis G,Kazilis N.Engineering geological considerations in tunneling through major tectonic thrust zones—case along the Egnatia motorway,Northern Greece[C]//Hack,etal.Engineering Geology for Infrastructure Planning in Europe.Berlin:Springer,2004:527-537.
    [9]Plana D,Lopez C,Cornelles J,et al.Numerical analysis of a tunnel in an anisotropy rock mass-Envalira Tunnel[C]//Hack,et al.Engineering Geology for Infrastructure Planning in Europe.Berlin:Springer,2004:153-161.
    [10]吴树仁,张永双,韩金良,等.三峡水库引水工程秦巴段工程地质条件研究[J].地球学报,2006,27(5):488-494.
    [11]于学馥,郑颖人,刘怀恒,等.地下工程围岩稳定分析[M].北京:煤炭工业出版社,1983:20-94.
    [12]王薇,王连捷,乔子江,等.三维地应力场的有限元模拟及其在隧道设计中的应用[J].地球学报,2004,25(5):587-591.
    [13]王连捷,任希飞,丁原辰,等.地应力测量在采矿工程中的应用[M].北京:地震出版社,1994.
    [14]黄润秋,王贤能.深埋隧道工程主要灾害地质问题分析[J].水文地质工程地质,1998,(4):21-24.
    [15]水利部.水利水电工程地质堪察规范(GB50287-99)[S].北京:中国计划出版社,1999:80-150.
    [16]刘宝国,杜学东.圆形洞室围岩与结构相互作用的粘弹性解析[J].岩石力学与工程学报,2004,23(4):561-564.
    [17]孙红月,尚岳全,张春生.大型地下洞室围岩稳定性数值模拟分析[J].浙江大学学报(工学版),2004,38(1):70-74.
    [18]李金锁,彭华,马秀敏,等.水压致裂地应力测试方法在云南大理-丽江铁路隧道工程中的应用[J].地质通报,2006,25(5):644-648.
    [19]徐芝能.弹性力学简明教程[M].北京:高等教育出版社,2002:10-24.
    [20]Hoek E,Brown E T著.连志升,田良灿,王维德,等译.岩石地下工程[M].北京:冶金工业出版社,1986:107-130.

版权所有:© 2023 中国地质图书馆 中国地质调查局地学文献中心