用户名: 密码: 验证码:
FcRn介导Fc与金黄色葡萄球菌毒力因子融合蛋白跨细胞转运至局部免疫触发位点
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:FcRn involved in transepithelial transport of Fc fused protein with virulence factors of Staphylococcus aureus to local immunity-triggering sites
  • 作者:吕天星 ; 郝永清
  • 英文作者:LYU Tian-xing;HAO Yong-qing;Laboratory of Microbiology and Immunology,College of Veterinary Medicine,Inner Mongolia Agricultural University;
  • 关键词:奶牛 ; 乳腺局部免疫 ; 金黄色葡萄球菌 ; 新生儿Fc受体 ; Fc融合蛋白 ; 原代奶牛乳腺上皮细胞 ; 胞吞转运
  • 英文关键词:dairy cow;;mammary gland-localized immunity;;Staphylococcus aureus;;FcRn;;Fc fusion protein;;pbMECs;;transcytosis
  • 中文刊名:中国兽医学报
  • 英文刊名:Chinese Journal of Veterinary Science
  • 机构:内蒙古农业大学兽医学院微生物学与免疫学实验室;
  • 出版日期:2019-10-15
  • 出版单位:中国兽医学报
  • 年:2019
  • 期:10
  • 基金:国家自然科学基金资助项目(31460664)
  • 语种:中文;
  • 页:92-98
  • 页数:7
  • CN:22-1234/R
  • ISSN:1005-4545
  • 分类号:S852.4
摘要
为了探究奶牛乳房炎金黄色葡萄球菌毒力因子的重组蛋白能否经上皮屏障被转运至特定的乳腺局部免疫触发位点,本研究对金黄色葡萄球菌毒力因子重组蛋白FnBPB-ClfA和Fc融合蛋白Fc-FnBPB-ClfA的跨细胞转运机制、新生儿Fc受体(FcRn)是否参与此进程进行了验证。原代奶牛乳腺上皮细胞(pbMECs)接种于Transwell嵌套内的多孔膜上,培养至极性状态且细胞屏障完整,用于胞吞转运试验。将pbMECs对重组蛋白的胞吞转运试验设置为温度处理组(37℃和4℃)、蛋白A处理组、胞转途径抑制剂处理组。结果表明,2种重组蛋白均可被转运跨过pbMECs屏障,该转运作用呈温度依赖性,可能与囊泡介导的转运路径及FcRn受体有关,排除了细胞旁路扩散的可能。蛋白A对FnBPB-ClfA的跨细胞转运及亚细胞定位无明显影响,但明显减少了Fc-FnBPB-ClfA的跨细胞转运及其在细胞膜蛋白、骨架蛋白中的数量,说明Fc-FnBPB-ClfA的Fc与FcRn的结合在胞吞转运作用中发挥重要作用。LY294002、非律平以剂量-效应关系分别降低了FnBPB-ClfA、Fc-FnBPB-ClfA的跨细胞转运。结果表明,Fc融合蛋白Fc-FnBPB-ClfA能经胞吞转运作用跨过pbMECs屏障至局部免疫触发位点,且FcRn参与并促进了Fc融合蛋白的胞吞转运作用。
        The objective of present research is to investigate whether recombinant proteins against bovine mastitis-causing Staphylococcus aureus could be transported via transepithelial delivery to certain sites,in where local immune responses could be triggerred.Recombinant protein of FnBPB-ClfA anchoring virulence factors of Staphylococcus aureus and corresponding Fc-fusion format Fc-FnBPB-ClfA were used to testify their transcellular transport and the potential roles of neonatal Fc receptor(FcRn) during this process.In vitro transcytosis assays with polarized primary bovine mammary epithelial cells(pbMECs) monolayers cultivated on porous membrane inserts were performed.Alteration of intracellular localization and transcellular transport of FnBPB-ClfA and Fc-FnBPB-ClfA caused by different tempretures,interfering Fc-FnBPB-ClfA's interaction with the FcRn using staphylococal protein A and two inhibitors of common transcytosis pathways were assessed by Western blot analyses.The uptake and transcellular transport of recombinant proteins were strongly temperature-dependent,which ruled out paracellular passage indicating that binding to a receptor and vesicles seems to be involved.Protein A did not inhibit transcytosis or affected intracellular localization of FnBPB-ClfA but inhibited that of Fc-FnBPB-ClfA and reduced amounts of Fc-FnBPB-ClfA that co-extracted with proteins from membranes/organelles and cytoskeletal proteins suggesting a key role of the FcRn.LY294002 and Filipin Ⅲ reduced transcytosis of FnBPB-ClfA and Fc-FnBPB-ClfA respectively in a dose-effect relation.Taken together,recombinant protein of FnBPB-ClfA and its Fc-fusion format Fc-FnBPB-ClfA could be transported across tight barrier of pbMECs to local immunity-triggering sites via transepithelial delivery,and FcRn is involved in transcytosis of engineering-Fc fusion protein Fc-FnBPB-ClfA with enhanced delivery efficiency.
引文
[1] AITKEN S L,CORL C M,SORDILLO L M.Immunopathology of mastitis:insights into disease recognition and resolution[J].J Mammary Gland Biol,2011,16:291-304.
    [2] SORDILLO L M.Mammary gland immunobiology and resistance to mastitis[J].Vet Clin North Am Food Anim Pract,2018,34:507-523.
    [3] CASTAGLIUOLO I,PICCININI R,BEGGIAO E,et al.Mucosal genetic immunization against four adhesins protects against Staphylococcus aureus-induced mastitis in mice[J].Vaccine,2006,24:4393-4402.
    [4] PUJATO N,CAMUSSONE C M,RENNA M S,et al.Evaluation of the humoral immune response to a multicomponent recombinant vaccine against S.aureus in healthy pregnant heifers[J].Vet J,2018,235:47-53.
    [5] DEVRIENDT B,DE GEEST B G,GODDEERIS B M,et al.Crossing the barrier:targeting epithelial receptors for enhanced oral vaccine delivery[J].J Control Release,2012,160:431-439.
    [6] LEE C H,WOO J H,CHO K K,et al.Expression and characterization of human growth hormone-Fc fusion proteins for transcytosis induction[J].Appl Biochem Biotechnol,2007,46(Pt 4):211-217.
    [7] SOCKOLOSKY J T,SZOKA F C.The neonatal Fc receptor,FcRn,as a target for drug delivery and therapy[J].Adv Drug Deliv Rev,2015,91:109-124.
    [8] DEVRIENDT B,DE GEEST B G,GODDEERIS B M,et al.Crossing the barrier:targeting epithelial receptors for enhanced oral vaccine delivery[J].J Control Release,2012,160(3):431-439.
    [9] YE L L,ZENG R Y,BAI Y,et al.Efficient mucosal vaccination mediated by the neonatal Fc receptor[J].Nat Biotechnol,2011,29(2):158-163.
    [10] RICE-FICHT A C,ARENAS-GAMBOA A M,KAHL-MCDONAGH M M,et al.Polymeric particles in vaccine delivery[J].Curr Opin Microbiol,2010,13(1):106-112.
    [11] BRAYDEN D J,JEPSON M A,BAIRD A W.Keynote review:intestinal Peyer's patch M cells and oral vaccine targeting[J].Drug Discov Today,2005,10(17):1145-1157.
    [12] MIE?LER K S,MARKOV A G,AMASHEH S.Hydrostatic pressure incubation affects barrier properties of mammary epithelial cell monolayers,in vitro[J].Biochem Biophys Res Commun,2018,495(1):1089-1093.
    [13] LIPSCHUTZ J H,O?BRIEN L E,ALTSCHULER Y,et al.Analysis of membrane traffic in polarized epithelial cells[J].Curr Protoc Cell Biol,2001,15(4):307-315.
    [14] WELLNITZ O,ZBINDEN C,HUANG X,et al.Short communication:Differential loss of bovine mammary epithelial barrier integrity in response to lipopolysaccharide and lipoteichoic acid[J].J Dairy Sci,2016,99(6):4851-4856.
    [15] WELLNITZ O,ARNOLD E T,LEHMANN M,et al.Short communication:differential immunoglobulin transfer during mastitis challenge by pathogen-specific components[J].J Dairy Sci,2013,96(3):1681-1684.
    [16] CHEN W,LIU Y X,ZHANG L M,et al.Nocardia cyriacigeogica from bovine mastitis induced apoptosis of bovine mammary epithelial cells via activation of mitochondrial-caspase pathway[J].Front Cell Infect Microbiol,2017(7):194.
    [17] GUO J Y,LI F,HE Q G,et al.Neonatal Fc receptor-mediated IgG transport across porcine intestinal epithelial cells:potentially provide the mucosal protection[J].DNA Cell Biol,2016,35:301-309.
    [18] PORTER C,ARMSTRONGFISHER S,KOPOTSHA T,et al.Certolizumab pegol does not bind the neonatal Fc receptor (FcRn):Consequences for FcRn-mediated in vitro transcytosis and ex vivo human placental transfer[J].J Reprod Immunol,2016,116:7-12.
    [19] ZHENG Y X,WU J W,SHAN W,et al.Multifunctional nanoparticles enable efficient oral delivery of biomacromolecules via improving payload stability and regulating the transcytosis pathway[J].ACS Appl Mater Interfaces,2018,10(40):34039-34049.
    [20] KIEWIET MENSIENA B G,GONZáLEZ R M I,DEKKERS R,et al.The epithelial barrier-protecting properties of a soy hydrolysate[J].Food Funct,2018,9(8):4164-4172.
    [21] WINES B D,POWELL M S,PARREN P W,et al.The IgG Fc contains distinct Fc receptor (FcR) binding sites:the leukocyte receptors Fc gamma RI and Fc gamma RIIa bind to a region in the Fc distinct from that recognized by neonatal FcR and protein A[J].J Immunol,2000,164(10):5313-5318.
    [22] ALMEIDA R A,OLIVER S P.Trafficking of Streptococcus uberis in bovine mammary epithelial cells[J].Microb Pathog,2006,41:80-89.
    [23] MARTINS J P,KENNEDY P J,SANTOS H A,et al.A comprehensive review of the neonatal Fc receptor and its application in drug delivery[J].Pharmacol Ther,2016,161:22-39.
    [24] FOSS S,GREVYS A,SAND K M K,et al.Enhanced FcRn-dependent transepithelial delivery of IgG by Fc-engineering and polymerization[J].J Control Release,2016,223:42-52.
    [25] KUO T T,AVESON V G.Neonatal Fc receptor and IgG-based therapeutics[J].MAbs,2011,3(5):422-430.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700