用户名: 密码: 验证码:
径流过程水分滞留时间研究进展
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Research progress on water residence time in runoff process
  • 作者:杨娜 ; 刘九夫 ; 关铁生 ; 杨勤丽 ; 王国庆
  • 英文作者:YANG Na;LIU Jiufu;GUAN Tiesheng;YANG Qinli;WANG Guoqing;State Key Laboratory of Hydrology-water Resources and Hydraulic Engineering,Nanjing Hydraulic Research Institute;College of Water Resources & Hydropower,Sichuan University;School of Resources and Environment,University of Electronic Science and Technology of China;
  • 关键词:径流过程 ; 水分滞留时间 ; 水文示踪 ; 集总参数模型
  • 英文关键词:runoff process;;water residence time;;hydrological tracing;;lumped parameter model
  • 中文刊名:水资源与水工程学报
  • 英文刊名:Journal of Water Resources and Water Engineering
  • 机构:南京水利科学研究院水文水资源与水利工程科学国家重点实验室;四川大学水利水电学院;电子科技大学资源与环境学院;
  • 出版日期:2019-06-15
  • 出版单位:水资源与水工程学报
  • 年:2019
  • 期:03
  • 基金:国家自然科学基金重点项目(41830863、51779146);国家自然科学基金项目(91647203、51609145);; 国家“十三五”重点研发计划“全球变化及应对”重点专项课题(2016YFA0601501);; 水文水资源与水利工程科学国家重点实验室开放基金项目(2017490211);; 中央级公益性科研院所基本科研业务费项目(Y517009)
  • 语种:中文;
  • 页:27-32+41
  • 页数:7
  • CN:61-1413/TV
  • ISSN:1672-643X
  • 分类号:P333.1
摘要
径流过程水分滞留时间可以揭示有关水的储存、水流路径和水分来源的信息,用于表征和比较不同的水文系统,并且广泛地用来描述流域功能。在前人对径流过程水分滞留时间研究的基础上,系统地总结了地形、土壤覆盖和气候等因素对流域水分滞留时间的影响,分析了同位素和水化学示踪剂在滞留时间评估中的应用,综述了估算水分滞留时间的集总参数模型的研究进展。水文示踪和集总参数模型是研究水分滞留时间的有效手段,强化流域水文循环全要素监测,系统研究关键带径流组分滞留时间是未来深入揭示流域水文过程响应机制的重要内容和研究方向。
        Water residence time can reveal information of water storage,flow paths and water sources. It could be used to characterize and compare different hydrological systems,and has been widely applied to describe catchment functions. Based on the previous studies on water residence time in runoff processes,this paper systematically reviewed the progress on effects of topography,soil cover and climate on water residence time in catchments,analyzed the applications of isotopic and hydrochemical tracers in the evaluation of residence time,and reviewed the research on lumped parameter models in estimating water residence time. Hydrological tracing and lumped parameter models are effective approaches to estimate water residence time. To strengthen the monitoring of catchment hydrological cycle and systematically study the residence time of runoff components in key zones is an important content and research direction to reveal the response mechanism of hydrological process in the future.
引文
[1]MCGUIRE K J,MCDONNELL J J. A review and evaluation of catchment transit time modeling[J]. Journal of Hydrology,2006,330(3-4):543-563.
    [2]BURNS D,PLUMMER L N,MCDONNELL J J,et al. The geochemical evolution of riparian groundwater in a forested piedmont catchment[J]. Groundwater,2010,41(7):913-925.
    [3]SWANA K A,MILLER J A,TALMA A S,et al. Comparing the residence time of deep vs shallow groundwater in the Karoo Basin,South Africa using3H,14C,36Cl and4He isotopes[J]. Procedia Earth and Planetary Science,2015,13:215-218.
    [4]MARTNEZ,D. E,FOURR,E,LONDOOO M Q,et al. Residence time distribution in a large unconfinedsemiconfined aquifer in the Argentine Pampas using3H/3He and CFC tracers[J]. Hydrogeology Journal,2016,24(5):1107-1120.
    [5]PETERMANN E,GIBSON J J,KNLLER K,et al. Determination of groundwater discharge rates and water residence time of groundwater-fed lakes by stable isotopes of water(18O,2H)and radon(222Rn)mass balances[J].Hydrological Processes,2018,32(6):805-816.
    [6]MARAIS J,DE DREUZY J R,GINN T R,et al. Inferring transit time distributions from atmospheric tracer data:Assessment of the predictive capacities of Lumped Parameter Models on a 3D crystalline aquifer model[J]. Journal of Hydrology,2015,525:619-631.
    [7] KRISZTINA KRMN, MALOSZEWSKI P, JZSEF DEK,et al. Transit time determination for a riverbank filtration system using oxygen isotope data and the lumpedparameter model[J]. International Association of Scientific Hydrology. Bulletin,2014,59(6):1109-1116.
    [8]OPHLIE FOVET,RUIZ L,FAUCHEUX M,et al. Using long time series of agricultural-derived nitrates for estimating catchment transit times[J]. Journal of Hydrology,2015,522:603-617.
    [9]WOLO D M. Effects of basin size on low-flow stream chemistry and subsurface contact time in the Neversink River watershed, New York[J]. Hydrological Processes,2015,11(9):1273-1286.
    [10]BROXTON P D,TROCH P A,LYON S W. On the role of aspect to quantify water transit times in small mountainous catchments[J]. Water Resources Research,2009,45(8):2263-2289.
    [11]吴锦奎,杨淇越,叶柏生,等.同位素技术在流域水文研究中的重要进展[J].冰川冻土,2008,30(6):1024-1032.
    [12]MCGUIRE K J,MCDONNELL J J,WEILER M,et al.The role of topography on catchment-scale water residence time[J]. Water Resources Research,2005,41(5):266-279.
    [13]LAUDON H,SJBLOM V,BUFFAM I,et al. The role of catchment scale and landscape characteristics for runoff generation of boreal streams[J]. Journal of Hydrology,2007,344(3-4):198-209.
    [14]TETZLAFF D,MALCOLM I A,SOULSBY C. Influence of forestry,environmental change and climatic variability on the hydrology,hydrochemistry and residence times of upland catchments[J]. Journal of Hydrology,2007,346(3-4):93-111.
    [15]JENCSO K G,MCGLYNN B L,GOOSEFF M N,et al.Hydrologic connectivity between landscapes and streams:transferring reach-and plot-scale understanding to the catchment scale[J]. Water Resources Research,2009,45(4):262-275.
    [16]AGGARWAL P K. Isotope hydrology at the International Atomic Energy Agency[J]. Hydrological Processes,2002,16(11):2257-2259.
    [17] SHAMAN J,STIEGLITZ M,BURNS D. Are big basins just the sum of small catchments?[J]. Hydrological Processes,2010,18(16):3195-3206.
    [18]MCGLYNN B L,SEIBERT J. Distributed assessment of contributing area and riparian buffering along stream networks[J]. Water Resources Research,2003,39(4):24-26.
    [19]SAYAMA T,MCDONNELL J J. A new time-space accounting scheme to predict stream water residence time and hydrograph source components at the water scale[J].Water Resources Research,2009,45(7):735-742.
    [20]RODGERS P,SOULSBY C,WALDRON S,et al. Using stable isotope tracers to assess hydrological flow paths,residence times and landscape influences in a nested mesoscale catchment[J]. Hydrology and Earth System Sciences,2005,9(3):139-155.
    [21]BARIAC T,VIVILLE D,LADOUCHE B. Isotope hydrological study of mean transit time in the granitic strengbach catchmen(Vosges Massif,France):Application for the Flow PC Model with modified input function[J].Hydrological Processes,2006,20(8):1737-1751.
    [22]TAPIA A P,SOULSBY C,TETZLAFF D,et al. Hydroclimatic influences on non-stationary transit time distributions in a boreal headwater catchment[J]. Journal of Hydrology,2016,543:7-16.
    [23]SOLOMON D K,GENEREUX D P,PLUMMER L N,et al. Testing mixing models of old and young groundwater in a tropical lowland rain forest with environmental tracers[J]. Water Resources Research,2010,46(4):258-271.
    [24]INGO HEIDBCHEL,TROCH P A,LYON S W,et al.The master transit time distribution of variable flow systems[J]. Water Resources Research,2012,48(6):407-425.
    [25]OZYURT N N,BAYARI C S. Steady-and unsteadystate lumped parameter modelling of tritium and chlorofluorocarbons transport:hypothetical analyses and application to an alpine karst aquifer[J]. Hydrological Processes,2010,19(17):3269-3284.
    [26]HRACHOWITZ M,SOULSBY C,TETZLAFF D,et al.Using long-term data sets to understand transit times in contrasting headwater catchments[J]. Journal of Hydrology 2009,367(3-4):237-248.
    [27]LYON S W,DESILETS S L E,TROCH P A. Characterizing the response of a catchment to an extreme rainfall event using hydrometric and isotopic data[J]. Water Resources Research,2008,44(6):205-216.
    [28]CHATTERJEE S,SINHA U K,ANSARI M A,et al. Application of lumped parameter model to estimate mean transit time(MTT)of the thermal water using environmental tracer(3H):Insight from uttarakhand geothermal area(India)[J]. Applied Geochemistry,2018,94:1-10.
    [29] KRALIK M, HUMER F, FANK J, et al. Using18O/2H,3H/3He,85Kr and CFCs to determine mean residence times and water origin in the Grazer and Leibnitzer Feld groundwater bodies(Austria)[J]. Applied Geochemistry,2014,50:150-163.
    [30]TAMBORSKI J J,COCHRAN J K,BOKUNIEWICZ H J.Application of224Ra and222Rn for evaluating seawater residence times in a tidal subterranean estuary[J]. Marine Chemistry,2017,189:32-45.
    [31] WANG Shiqin,YUAN Ruiqiang,TANG Changyuan,et al. Combination of CFCs and stable isotopes to characterize the mechanism of surface water-groundwater interaction in a headwater basin of the North China Plain[J].Hydrological Processes,2018,32(11):1571-1587.
    [32]BASKARAN M,SWARZENSKI P W. Seasonal variations on the residence times and partitioning of short-lived radionuclides(234Th,7Be and210Pb)and depositional fluxes of7Be and210Pb in Tampa Bay,Florida[J]. Marine Chemistry,2007,104(1-2):27-42.
    [33]HE Maojun,CAI Wenjian,NI Wei,et al. RNGA based control system configuration for multivariable processes[J]. Journal of Process Control,2009,19(6):1036-1042.
    [34] STADLER S,OSENBRCK KARSTEN,DUIJNISVELD W H M,et al. Linking chloride mass balance infiltration rates with chlorofluorocarbon and SF6,groundwater dating in semi-arid settings:potential and limitations[J]. Isotopes in Environmental and Health Studies,2010,46(3):312-324.
    [35]COOK P G,SOLOMON D K. Recent advances in dating young groundwater:chlorofluorocarbons,{3H}/{3He}and85Kr[J]. Journal of Hydrology,2015,191(1-4):245-265.
    [36] FENICIA F,MCDONNELL J J,SAVENIJE H H G.Learning from model improvement:On the contribution of complementary data to process understanding[J]. Water Resources Research,2008,44(6):196-200.
    [37] NEAL C,CHRISTOPHERSEN N,NEALE R,et al.Chloride in precipitation and streamwater for the upland catchment of river severn,mid‐wales; some consequences for hydrochemical models[J]. Hydrological Processes,2010,2(2):155-165.
    [38]KIRCHNER J W,FENG X H,NEAL C. Fractal stream chemistry and its implications for contaminant transport\r\nin catchments[J]. Nature,2000,403(6769):524-527.
    [39] CYRILLE B. Modeling chloride transport using travel time distributions at Plynlimon,Wales[J]. Water Resources Research,2015,51(5):3259-3276.
    [40]KIRCHNER J W,TETZLAFF D,SOULSBY C. Comparing chloride and water isotopes as hydrological tracers in two Scottish catchments[J]. Hydrological Processes,2010,24(12):1631-1645.
    [41]RINALDO A,BEVEN K J,BERTUZZO E,et al. Catchment travel time distributions and water flow in soils[J].Water Resources Research,2011,47(7):209-216.
    [42] EBERTS S M,BHLKE J K,KAUFFMAN L J,et al.Comparison of particle-tracking and lumped-parameter age-distribution models for evaluating vulnerability of production wells to contamination[J]. Hydrogeology Journal,2012,20(2):263-282.
    [43]BIEBLER K E,WODNY M. Compartment models and associated residence time distributions[M]. Splines and Compartment Models:An Introduction. 2014.
    [44]MELANSON A,MEJIAS J F,JUN J J,et al. Nonstationary stochastic dynamics underlie spontaneous transitions between active and inactive behavioral states[J]. Eneuro,2017,4(2):167-187.
    [45]OZYURT N N,BAYARI C S. LUMPED Unsteady:a Visual Basic code of unsteady-state lumped-parameter models for mean residence time analyses of groundwater systems[J]. Computers&Geosciences,2005,31(3):329-341.
    [46]李婷,胡伟伟,马致远,等.基于活塞—指数混合模型的地下水可更新性研究[J].地下水,2011,33(3):1-2+10.
    [47] TOTH D J,KATZ B G. Mixing of shallow and deep groundwater as indicated by the chemistry and age of karstic springs[J]. Hydrogeology Journal,2006,14(6):1060-1080.
    [48]SNCHEZ-MURILLO R,BROOKS E S,ELLIOT W J,et al. Isotope hydrology and baseflow geochemistry in natural and human-altered watersheds in the Inland Pacific Northwest, USA[J]. Isotopes in Environmental and Health Studies,2015,51(2):231-254.
    [49] JURGENS BC,BHLKE JK,EBERTS SM. Tracer LPM(Version 1):An Excelworkbook for interpreting groundwater age distributions from environmental tracer data[M]. Createspace Independent Pub,2014.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700