用户名: 密码: 验证码:
孟巴矿厚松散含水层下协调保水开采模式
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Coordinated waterproof mining mode under thick loose sand stratum in Barapukuria coal mine
  • 作者:余学义 ; 毛旭魏 ; 郭文彬
  • 英文作者:YU Xueyi;MAO Xuwei;GUO Wenbin;School of Energy,Xi'an University of Science and Technology;Key Laboratory of Western Mines and Hazard Prevention of Ministry of Education,Xi'an University of Science and Technology;Mining College,Hulunbuir University;
  • 关键词:厚松散含水层 ; 限高协调开采 ; 上保下疏开采模式 ; 保水采煤(保水开采) ; 导水裂缝带
  • 英文关键词:thick loosened aquifer;;limited height harmonic mining;;mining model of protecting upper aquifer and dredging lower aquifer;;water-preserved coal mining;;water conducted fracture zone
  • 中文刊名:煤炭学报
  • 英文刊名:Journal of China Coal Society
  • 机构:西安科技大学能源学院;西安科技大学教育部西部矿井开采与灾害防治重点实验室;呼伦贝尔学院矿业学院;
  • 出版日期:2019-03-15
  • 出版单位:煤炭学报
  • 年:2019
  • 期:03
  • 基金:国家自然科学基金资助项目(51874230)
  • 语种:中文;
  • 页:79-86
  • 页数:8
  • CN:11-2190/TD
  • ISSN:0253-9993
  • 分类号:TD82
摘要
孟巴矿的地质采矿条件具有近地表松散富含水层厚、煤层顶板厚、煤层厚的"三厚"特征,开采煤层覆岩中含有多个含水层组,矿井水害是威胁矿井安全生产的主要因素。在覆岩多水体条件下,为了有效防止近地表厚松散UDT含水层进入井下,导致淹井灾害发生,提出上保下疏的开采水害防治模式。一分层安全开采的关键技术是控制复合关键层的结构稳定,应用初始后屈曲理论解析其稳定性,得出结构关键层的极限破坏长度,通过线性回归给出分层开采覆岩导水裂缝带发育高度预计计算公式,分析确定了一分层开采工作面宽度不超过150 m,限高开采3 m;依据对UDT含水层防护的安全煤岩柱高度确定二分层开采高度,二分层开采后覆岩结构关键层发生破坏,既能够有效疏放LDT隔水层以下含水层水,又能够保证LDT隔水层的完整性,达到UDT水体不发生下泄的目的,保障了矿井安全开采;根据工作面协调减损开采原理,确定开采分层合理错距约为82 m,下分层的巷道布置在上分层开采采空区下的厚煤层分层错距协调限高开采布置模式,实现有效降低了覆岩应力的叠加效应,减轻LDT隔水层的变形破坏程度。开采结果表明:厚煤层分层协调布置开采方法,有效减轻了UDT含水层下LDT隔水层应力叠加损伤程度,保护了隔水层的完整性;一分层限高综采,二分层限高综放开采分次疏放了煤层顶板至LDT底板2个含水层组,解决了矿井排水能力较小条件下的水害防治问题;分层工作面错距协调布置开采方法,有效降低了开采边界导水裂缝带发育高度,减小了LDT变形破坏程度,同时释放了一分层区段煤柱应力,实现了覆岩整体下沉,不但有效地降低了覆岩破坏高度,而且减小了冲击矿压冲击强度,开采期间UDT水位变化幅度稳定保持在一定范围内,实现了多水体条件下上保下疏的厚煤层分层安全开采模式。
        The geological mining conditions of Barapukuria coal mine are characterized by "three thick"features of strata structure,namely the aquifer with thick unconsolidated formation near the surface,the special thick coal seam and thick roof.There are many aquifer groups in the overburden strata above coal seams.Water hazard in the coal mine is the main factor that threatens safe mining.Under the condition of overburden and multi-water body,in order to prevent the water in the loose UDT aquifer near the surface entering the underground longwall face,and avoid the water outburst disaster in the mine,the prevention and control mode of mining water hazard is put forward to protect the upper aquifer and drain the lower aquifer.The key technology of one-layer safe mining is to control the structural stability of compound key stratum.The initial post-buckling theory is used to analyze the stability of compound key stratum,and the ultimate failure length of key stratum is obtained.Under stratified mining condition,the formulas for predicting the development height of water conducted fracture zone in overlying strata are given by linear regression,and the width of working face in stratified mining is not more than 150 m and the mining height is limited to 3 m.According to the safe height of coal pillar to protect UDT aquifer,the mining height of second-layer mining is determined.After second-layer mining,the key stratum of overburden structure is destroyed,which can not only effectively drain the aquifer water below the LDT aquiclude,but also ensure the integrity of the LDT aquiclude,and it can achieve the purpose of UDT water body with no leaking,which ensures the safe mining of the coal mine.According to the principle of coordinated and damage reduction mining in working face,it is determined that the reasonable offset of mining layers is about 82 m.Layout pattern of stratified thick coal seam and limited mining height with rational offset is put up.The roadway of lower seam is located under the upper goaf,which can reduce the superposition of overburden stress and the deformation and damage of LDT aquiclude.The mining results show that the method of layered coordinated mining in thick seam can effectively reduce the stress superposition damage of LDT aquiclude under UDT aquifer and protect the integrity of aquiclude.In one-layer limited-height fully mechanized mining and two-layer limited-height fully mechanized caving mining,two aquifer groups from coal seam roof to LDT floor are separately drained,which solves the problem of water hazard prevention and control under the condition of small drainage capacity of mine.The staggered coordinated layout mining method of stratified working face effectively reduces the development height of water conducted fracture zone at mining boundary,reduces the degree of LDT deformation and damage,releases the stress of coal pillar in a stratified section,and realizes the overall subsidence of overburden.It not only effectively reduces the height of overburden failure,but also reduces the impact strength of rock burst.During the mining,UDT water level changes within a certain range,which realizes the safe mining mode of thick seam with upper and lower sparse seams under the condition of multi-water body.
引文
[1]许文强.Barapukuria煤矿强含水厚松散层下协调减损开采技术研究[D].西安:西安科技大学,2016:15-37.XU Wenqiang.Research on coordination and damage-reduction mining technology under thick loose strong aquifer of Barapukuria Coal Mine[D].Xi’an:Xi’an University of Science and Technology,2016:15-37.
    [2]余学义,刘俊,赵兵朝,等.孟巴矿特厚煤层分层开采覆岩导水裂隙带高度测定[J].煤矿安全,2013,4(8):169-174.YU Xueyi,LIU Jun,ZHAO Bingchao,et al.Determination on the height of slice mining overburden rock water flowing fracured zone of extremely thick coal seams in Barapukuria Coal Mine of Bangladesh[J].Safety in Coal Mines,2013,44(8):169-174.
    [3]吕金殿.孟加拉国Barapukuria煤矿冲击地压发生原因分析与防治[J].能源技术与管理,2012,(6):44-46.
    [4]于广明,谢和平,孙洪泉,等.矿山开采沉陷的非线性机制和规律研究[J].中国科学基金,1999,12(1):28-30.YU Guangming,XIE Heping,SUN Hongquan,et al.Studies on the nonlinear mechanism and laws of mining subsidence[J].Bulletin of National Natural Science Foundation of China,1999,12(1):28-30.
    [5]THOMAS J L,ANDERSONRL R L.Water-energy conflicts in Montana’s Yellowstone river basin,Southeastern Montana[J].Journal of the American Water Resources Association,1976,12(4):829-842.
    [6]PLOTKIN S E,GOLD H,WHITE I L.Water and energy in the western coal lands[J].Journal of the American Water Resources Association,1979,15(1):94-107.
    [7]LOVEDAYPE,ATKINSAS,AZIZNI.The problem of Australian underground coal mining operations in water catchment areas[J].International Journal of Mine Water,1983,2(3):12-15.
    [8]SINGHERN,JAKEMANM.Strata monitoring investigations around longwall panels beneath the cataract reservoir[J].Mine Water and the Environment,2001,20:55-64.
    [9]BOOTH C J,BERTSCH L P.Groundwater geochemistry in shallow aquifers above longwall mines in Illinois,USA[J].Hydrogeology Journal,1999,7(6):561-575.
    [10]BOOTH C J.Groundwater as an environmental constraint of longwall coal mining[J].Environmental Geology,2006,49(6):796-803.
    [11]范立民.神木矿区的主要环境地质问题[J].水文地质工程地质,1992,19(6):37-40.FAN Limin.Environmental geology in Shenmu mining area[J].Hydro-geology&Engineering Geology,1992,19(6):37-40.
    [12]范立民.论保水采煤问题[J].煤田地质与勘探,2005,33(5):50-53.FAN Limin.Discussing on coal mining under water-containing condition[J].Coal Geology&Exploration,2005,33(5):50-53.
    [13]钱鸣高,许家林,缪协兴.煤矿绿色开采技术[J].中国矿业大学学报,2003,32(4):343-348.QIAN Minggao,XU Jialin,MIAO Xiexing.Green Technique in Coal Mining[J].Journal of China University of Mining&Technology,2003,32(4):343-348.
    [14]钱鸣高.煤炭的科学开采[J].煤炭学报,2010,35(4):529-534.QIAN Minggao.On sustainable coal mining in China[J].Journal of China Coal Society,2010,35(4):529-534.
    [15]范立民.保水采煤的科学内涵[J].煤炭学报,2017,42(1):27-35.FAN Limin.Scientific connotation of water-preserved mining[J].Journal of China Coal Society,2017,42(1):27-35.
    [16]FAN Limin,MA Xiongde.A review on investigation of water-preserved coal mining in western China[J].International Journal of Coal Science&Technology,2018,5(4):411-416.
    [17]王双明,黄庆享,范立民,等.生态脆弱矿区含(隔)水层特征及保水开采分区研究[J].煤炭学报,2010,35(1):7-14.WANG Shuangming,HUANG Qingxiang,FAN Limin,et al.Study on overburden aquclude and water protection mining regionazation in the ecological fragile mining area[J].Journal of China Coal Society,2010,35(1):7-14.
    [18]黄庆享.浅埋煤层的矿压特征与浅埋煤层定义[J].岩石力学与工程学报,2002,21(8):1174-1177.HUANG Qingxiang.Ground pressure behaviorand definition of shallow seams[J].Chinese Journal of Rock Mechanics and Engineering,2002,21(8):1174-1177.
    [19]黄庆享,钱鸣高,石平五.浅埋煤层采场老顶周期来压的结构分析[J].煤炭学报,1999,24(6):581-585.HUANG Qingxiang,QIAN Minggao,SHI Pingwu.Structural analysis of main roof stability during periodic weighting in long wall face[J].Journal of China Coal Society,1999,24(6):581-585.
    [20]黄庆享,张文忠.浅埋煤层条带充填隔水岩组力学模型分析[J].煤炭学报,2015,40(5):973-978.HUANG Qingxiang,ZHANG Wenzhong.Mechanical model of water resisting strata group in shallow seam strip-filling mining[J].Journal of China Coal Society,2015,40(5):973-978.
    [21]余学义,郭文彬,赵兵朝.冈瓦纳地层特厚煤层顶水分层开采覆岩破坏规律综合研究[J].矿业安全与环保,2016,43(2):71-75.YU Xueyi,GUO Wenbin,ZHAO Bingchao.Comprehensive research on overburden strata failure law during backwater slice mining of extra-thick coal seam in gondwana strata[J].Mining Safety and Environmental Protection,2016,43(2):71-75.
    [22]郭文彬,余学义,赵兵朝,等.高构造应力区大采高覆岩灾变规律实验研究[J].采矿与安全工程学报,2016,33(6):1058-1064.GUO Wenbin,YU Xueyi,ZHAO Bingchao,et al.Experimental research on catastrophic mechanism of overburden strata with high excavation height in high tectonic stress zone[J].Journal of Mining&Safety Engineering,2016,33(6):1058-1064.
    [23]吕广罗,田刚军,张勇,等.巨厚砂砾岩含水层下特厚煤层保水开采分区及实践[J].煤炭学报,2017,42(1):189-196.LGuangluo,TIAN Gangjun,ZHANG Yong,et al.Division and practice of water-preserved mining in ultra-thick coal seam under ultra thick sandy conglomerate aquifer[J].Journal of China Coal Society,2017,42(1):189-196.
    [24]刘瑞新.松散含水层下提高开采上限的研究与实践[J].煤炭科学技术,2010,38(11):56-59.LIU Ruixin.Study and practices on improvement of mining up limit under loose aquifer[J].Coal Science and Technology,2010,38(11):56-59.
    [25]滕永海.综放开采导水裂缝带的发育特征与最大高度计算[J].煤炭科学技术,2011,39(4):117-120.TENG Yonghai.Development features and max height calculation of water conducted fractured zone caused by fully mechanized top coal caving mining[J].Coal Science and Technology,2011,39(4):117-120.
    [26]杨艳国,王军,于永江.河下多煤层安全开采顺序对导水裂隙带高度的影响[J].煤炭学报,2015,40(S1):27-32.YANG Yanguo,WANG Jun,YU Yongjiang.Effects of different coal safe mining sequence under river on height of water flowing fracture zone[J].Journal of China Coal Society,2015,40(S1):27-32.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700