用户名: 密码: 验证码:
CHO细胞工程化改造的研究进展
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:CHO cell engineering progress
  • 作者:宓庆宇 ; 游敏 ; 罗文新
  • 英文作者:MI Qing-yu;YOU Min;LUO Wen-xin;State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics,School of Public Health,Xiamen University;
  • 关键词:重组蛋白类药物 ; 宿主细胞 ; 抗凋亡 ; 工程改造
  • 英文关键词:recombinant protein drugs;;Host cells;;antiapoptotic;;engineering
  • 中文刊名:生物技术
  • 英文刊名:Biotechnology
  • 机构:厦门大学分子疫苗学和分子诊断学国家重点实验室厦门大学公共卫生学院;
  • 出版日期:2019-06-20
  • 出版单位:生物技术
  • 年:2019
  • 期:03
  • 基金:福建省自然科学基金项目(2017J01066);; 国家自然科学基金项目(31670927; 31870925);; 传染病重大专项(2017ZX10202203-001-001)
  • 语种:中文;
  • 页:101-109
  • 页数:9
  • CN:23-1319/Q
  • ISSN:1004-311X
  • 分类号:Q813;Q78
摘要
该文综述了CHO细胞工程化改造相关研究的最新进展,对CHO细胞在调节代谢、抗凋亡和糖基化等方面的工程改造及应用进行了归纳和总结,提出了CHO表达系统应用中可能出现的问题,并对CHO细胞表达系统应用前景进行了展望,以期为后续相关研究提供思路。
        In this paper,the latest research progress of summarizes the CHO cells engineering progress was reviewed,we mainly discussed and summarized the CHO cells in regulating metabolism,antiapoptotic and glycosylation engineering and application,proposed the CHO expression system applications,the potential problems and prospect of CHO cell expression system application was discussed,which was expected to provides ideas for subsequent research.
引文
[1]Awwad S,Angkawinitwong U.Overview of antibody drug delivery[J].Pharmaceutics,2018,10(3):DOI:10.3390/pharmaceutics10030083.
    [2]Amann T,Hansen A H,Kol S,et al.Glyco-engineered CHO cell lines producing alpha-1-antitrypsin and C1 esterase inhibitor with fully humanized N-glycosylation profiles[J].Metab Eng,2019,52:143-152.
    [3]Kuo C C,Chiang A W,Shamie I,et al.The emerging role of systems biology for engineering protein production in CHO cells[J].Curr Opin Biotechnol,2018,51:64-69.
    [4]王登,刘煜.用于重组蛋白表达的哺乳动物细胞系的研究进展[J].药物生物技术,2014,21(05):478-482.
    [5]Shan Q,Baltes N J,Atkins P,et al.ZFN,TALEN and CRISPR-Cas9 mediated homology directed gene insertion in Arabidopsis:a disconnect between somatic and germinal cells[J].J Genet Genomics,2018,45(12):681-684.
    [6]Hirano S,Nishimasu H,Ishitani R,et al.Structural basis for the altered PAM specificities of engineered CRISPR-Cas9[J].Mol Cell,2016,61(6):886-894.
    [7]刘娜,袁宝珠.利用细胞工程技术改造蛋白生产用CHO细胞的研究进展[J].中国医药生物技术,2014,9(5):369-371.
    [8]Fischer S,Handrick R,Otte K.The art of CHO cell engineering:Acomprehensive retrospect and future perspectives[J].Biotechnol Adv,2015,33(8):1878-1896.
    [9]Coleman O,Suda S,Meiller J,et al.Increased growth rate and productivity following stable depletion of miR-7 in a m Ab producing CHO cell line causes an increase in proteins associated with the Akt pathway and ribosome biogenesis[J].J Proteomics,2019,195:23-32.
    [10]Kim J Y,Kim Y G,Lee G M.CHO cells in biotechnology for production of recombinant proteins:current state and further potential[J].Appl Microbiol Biotechnol,2012,93(3):17-30.
    [11]郑惠惠,江洪.CHO细胞表达系统研究进展[J].生物技术进展,2016,6(4):239-243.
    [12]惠开元,高向东,徐晨.单克隆抗体制备的细胞工程学研究进展[J].中国生物工程杂志,2012,32(2):90-95.
    [13]Arden N.,Betenbaugh M.J.Life and death in mammalian cell culture:strategies for apoptosis inhibition[J].Trends Biotechnol,2004,22(4):74-80.
    [14]Zhang X.,Han L.,Zong H.,et al.Enhanced production of antiPD1 antibody in CHO cells through transient co-transfection with anti-apoptotic genes Bcl-x L and Mcl-1[J].Bioprocess Biosyst Eng,2018,41(5):633-640.
    [15]张存超,寇庚,王皓.基因工程改造与中国仓鼠卵巢细胞凋亡[J].化学与生物工程,2014,31(12):1-3.
    [16]Baek E,Noh S M,Lee G M.Anti-Apoptosis engineering for improved protein production from CHO cells[J].Methods Mol Biol,2017,16(03):71-85.
    [17]Han S,Rhee W J.Inhibition of apoptosis using exosomes in Chinese hamster ovary cell culture[J].Biotechnol Bioeng,2018,115(5):1331-1339.
    [18]Chiang G G,Sisk W P.Bcl-x(L)mediates increased production of humanized monoclonal antibodies in Chinese hamster ovary cells[J].Biotechnol Bioeng,2005,91(7):779-792.
    [19]Kim N S,Lee G M.Overexpression of bcl-2 inhibits sodium butyrate-induced apoptosis in Chinese hamster ovary cells resulting in enhanced humanized antibody production[J].Biotechnol Bioeng,2000,71(3):184-193.
    [20]Cost G J,Freyvert Y,Vafiadis A,et al.BAK and BAX deletion using zinc-finger nucleases yields apoptosis-resistant CHO cells[J].Biotechnol Bioeng,2010,105(2):330-340.
    [21]Majors B S,Betenbaugh M J,Pederson N E,et al.Mcl-1 overexpression leads to higher viabilities and increased production of humanized monoclonal antibody in Chinese hamster ovary cells[J].Biotechnol Prog,2009,25(4):1161-1168.
    [22]Meents H,Enenkel B,Eppenberger H M,et al.Impact of coexpression and coamplification of s ICAM and antiapoptosis determinants bcl-2/bcl-x(L)on productivity,cell survival,and mitochondria number in CHO-DG44 grown in suspension and serum-free media[J].Biotechnol Bioeng,2002,80(6):706-716.
    [23]Tey B T,Singh R P,Piredda L,et al.Influence of bcl-2 on cell death during the cultivation of a Chinese hamster ovary cell line expressing a chimeric antibody[J].Biotechnol Bioeng,2000,68(1):31-43.
    [24]Sung Y H,Lee J S,Park S H,et al.Influence of co-down-regulation of caspase-3 and caspase-7 by siRNAs on sodium butyrate-induced apoptotic cell death of Chinese hamster ovary cells producing thrombopoietin[J].Metab Eng,2007,9(5-6):452-464.
    [25]Kim N S,Lee GM.Inhibition of sodium butyrate-induced apoptosis in recombinant Chinese hamster ovary cells by constitutively expressing antisense RNA of caspase-3[J].Biotechnol Bioeng,2002,78(2):217-228.
    [26]Yun C Y,Liu S,Lim S F,et al.Specific inhibition of caspase-8and-9 in CHO cells enhances cell viability in batch and fedbatch cultures[J].Metab Eng,2007,9(5-6):406-418.
    [27]Sauerwald T M,Oyler G A,Betenbaugh M J.Study of caspase inhibitors for limiting death in mammalian cell culture[J].Biotechnol Bioeng,2003,81(3):329-340.
    [28]Figueroa B,Jr.Ailor,E Osborne,et al.Enhanced cell culture performance using inducible anti-apoptotic genes E1B-19K and Aven in the production of a monoclonal antibody with Chinese hamster ovary cells[J].Biotechnol Bioeng,2007,97(4):877-892.
    [29]Arden N,Majors B S,Ahn S H,et al.Inhibiting the apoptosis pathway using MDM2 in mammalian cell cultures[J].Biotechnol Bioeng,2007,97(3):601-614.
    [30]Crea F,Sarti D,Falciani F,et al.Over-expression of hTERT in CHO K1 results in decreased apoptosis and reduced serum dependency[J].J Biotechnol,2006,121(2):109-123.
    [31]Tabuchi H,Sugiyama T,Tanaka S,et al.Overexpression of taurine transporter in Chinese hamster ovary cells can enhance cell viability and product yield,while promoting glutamine consumption[J].Biotechnol Bioeng,2010,107(6):998-1003.
    [32]Jeon M K,Yu D Y,Lee G M.Combinatorial engineering of ldh-a and bcl-2 for reducing lactate production and improving cell growth in dihydrofolate reductase-deficient Chinese hamster ovary cells[J].Appl Microbiol Biotechnol,2011,92(4):779-790.
    [33]Kim Y G,Lee GM.Bcl-x L overexpression does not enhance specific erythropoietin productivity of recombinant CHO cells grown at33 degrees C and 37 degrees C[J].Biotechnol Prog,2009,25(1):252-256.
    [34]Kim N S,Lee G M.Response of recombinant Chinese hamster ovary cells to hyperosmotic pressure:effect of Bcl-2 overexpression[J].J Biotechnol,2002,95(3):237-248.
    [35]Borner C.The Bcl-2 protein family:sensors and checkpoints for life-or-death decisions[J].Mol Immunol,2003,39(11):615-647.
    [36]Templeton N,Lewis A,Dorai H,et al.The impact of anti-apoptotic gene Bcl-2 expression on CHO central metabolism[J].Metab Eng,2014,25:92-102.
    [37]Gulis G,Simi K C,de Toledo R R,et al.Optimization of heterologous protein production in Chinese hamster ovary cells under overexpression of spliced form of human X-box binding protein[J].BMC Biotechnol,2014,14:26,1-12.
    [38]Kwon R J,Kim S K,Lee S I,et al.Artificial transcription factors increase production of recombinant antibodies in Chinese hamster ovary cells[J].Biotechnol Lett,2006,28(1):9-15.
    [39]Grav L M,Lee J S,Gerling S,et al.One-step generation of triple knockout CHO cell lines using CRISPR/Cas9 and fluorescent enrichment[J].Biotechnol J,2015,10(9):1446-1456.
    [40]Pena-Blanco A,Garcia-Saez A J.Bax,Bak and beyond-mitochondrial performance in apoptosis[J].FEBS J,2018,285(3):416-431.
    [41]Iyer S,Uren R T,Kluck R M.Probing BAK and BAX activation and pore assembly with cytochrome C release,limited proteolysis,and oxidant-induced linkage[J].Methods Mol Biol,2019,1877:201-216.
    [42]Zhang E,Lu X,Yin S,et al.The functional role of Bax/Bak in palmitate-induced lipoapoptosis[J].Food Chem Toxicol,2019,123:268-274.
    [43]Ritter A,Voedisch B,Wienberg J,et al.Deletion of a telomeric region on chromosome 8 correlates with higher productivity and stability of CHO cell lines[J].Biotechnol Bioeng,2016,113(5):1084-1093.
    [44]Rita Costa A,Elisa Rodrigues M,Henriques M,et al.Guidelines to cell engineering for monoclonal antibody production[J].Eur JPharm Biopharm,2010,74(2):127-138.
    [45]Dreesen I A,Fussenegger M.Ectopic expression of human m TORincreases viability,robustness,cell size,proliferation,and antibody production of chinese hamster ovary cells[J].Biotechnol Bioeng,2011,108(4):853-866.
    [46]Calmels C,Mc Cann A,Malphettes L,et al.Application of a curated genome-scale metabolic model of CHO DG44 to an industrial fed-batch process[J].Metab Eng,2019,51:9-19.
    [47]Zhang F,Sun X,Yi X,et al.Metabolic characteristics of recombinant Chinese hamster ovary cells expressing glutamine synthetase in presence and absence of glutamine[J].Cytotechnology,2006,51(1):21-28.
    [48]Park H,Kim I H,Kim I Y,et al.Expression of carbamoyl phosphate synthetase I and ornithine transcarbamoylase genes in Chinese hamster ovary dhfr-cells decreases accumulation of ammonium ion in culture media[J].J Biotechnol,2000,81(2-3):129-140.
    [49]Gupta S K,Sharma A,Kushwaha H,et al.Over-expression of a codon optimized yeast cytosolic pyruvate carboxylase(PYC2)in CHO Cells for an Augmented Lactate Metabolism[J].Front Pharmacol,2017,8:463.
    [50]Zhou M,Crawford Y,Ng D,et al.Decreasing lactate level and increasing antibody production in Chinese Hamster Ovary cells(CHO)by reducing the expression of lactate dehydrogenase and pyruvate dehydrogenase kinases[J].J Biotechnol,2011,153(1-2):27-34.
    [51]Noh S M,Park J H,Lim M S,et al.Reduction of ammonia and lactate through the coupling of glutamine synthetase selection and downregulation of lactate dehydrogenase-A in CHO cells[J].Appl Microbiol Biotechnol,2017,101(3):1035-1045.
    [52]Toussaint C,Henry O,Durocher Y.Metabolic engineering of CHOcells to alter lactate metabolism during fed-batch cultures[J].JBiotechnol,2016,217:122-131.
    [53]Voronina E V,Seregin Y A,Litvinova N A,et al.Design of a stable cell line producing a recombinant monoclonal anti-TNFalpha antibody based on a CHO cell line[J].Springerplus,2016,5(1):1584-1595.
    [54]Sanders P G,Hussein A,Coggins L,et al.Gene amplification:the Chinese hamster glutamine synthetase gene[J].Dev Biol Stand,1987,66:55-63.
    [55]Fan L,Kadura I,Krebs L E,et al.Improving the efficiency of CHO cell line generation using glutamine synthetase gene knockout cells[J].Biotechnol Bioeng,2012,109(4):1007-1015.
    [56]Gupta S K,Shukla P.Gene editing for cell engineering:trends and applications[J].Crit Rev Biotechnol,2017,37(5):672-684.
    [57]Hong W W,Wu S C.A novel RNA silencing vector to improve antigen expression and stability in Chinese hamster ovary cells[J].Vaccine,2007,25(20):4103-4111.
    [58]Poulain A,Perret S,Malenfant F,et al.Rapid protein production from stable CHO cell pools using plasmid vector and the cumate gene-switch[J].J Biotechnol,2017,255:16-27.
    [59]Davies S L,O'Callaghan P M,Mc Leod J,et al.Impact of gene vector design on the control of recombinant monoclonal antibody production by Chinese hamster ovary cells[J].Biotechnol Prog,2011,27(6):1689-1699.
    [60]Dalton A C,Barton W A.Over-expression of secreted proteins from mammalian cell lines[J].Protein Sci,2014,23(5):517-525.
    [61]Wang W,Jia Y L,Li Y C,et al.Impact of different promoters,promoter mutation,and an enhancer on recombinant protein expression in CHO cells[J].Sci Rep,2017,7(1):104-116.
    [62]Johari Y B,Brown A J,Alves C S,et al.CHO genome mining for synthetic promoter design[J].J Biotechnol,2019,294:1-13.
    [63]Kawabe Y,Inao T,Komatsu S,et al.Improved recombinant antibody production by CHO cells using a production enhancer DNAelement with repeated transgene integration at a predetermined chromosomal site[J].J Biosci Bioeng,2017,123(3):390-397.
    [64]Li Q,Zhao C P,Lin Y,et al.Two human MARs effectively increase transgene expression in transfected CHO cells[J].J Cell Mol Med,2019,23(2):1613-1616.
    [65]Bibila T A,Flickinger M C.Use of a structured kinetic model of antibody synthesis and secretion for optimization of antibody production systems:II.Transient analysis[J].Biotechnol Bioeng,1992,39(3):262-272.
    [66]Kaneyoshi K,Kuroda K,Uchiyama K,et al.Secretion analysis of intracellular"difficult-to-express"immunoglobulin G(Ig G)in Chinese hamster ovary(CHO)cells[J].Cytotechnology,2019,71(1):305-316.
    [67]Borth N,Mattanovich D,Kunert R,et al.Effect of increased expression of protein disulfide isomerase and heavy chain binding protein on antibody secretion in a recombinant CHO cell line[J].Biotechnol Prog,2005,21(1):106-111.
    [68]Le Fourn V,Girod P A,Buceta M,et al.CHO cell engineering to prevent polypeptide aggregation and improve therapeutic protein secretion[J].Metab Eng,2014,21:91-102.
    [69]Josse L,Smales C M,Tuite M F.Engineering the chaperone network of CHO cells for optimal recombinant protein production and authenticity[J].Methods Mol Biol,2012,824:595-608.
    [70]Costello A,Lao NT,Barron N,et al.Improved yield of rhEPO in CHO cells with synthetic 5'UTR[J].Biotechnol Lett,2019,41(2):231-239.
    [71]Tan H K,Lee MM,Yap MG,et al.Overexpression of cold-inducible RNA-binding protein increases interferon-gamma production in Chinese-hamster ovary cells[J].Biotechnol Appl Biochem,2008,49(Pt 4):247-257.
    [72]Kaneyoshi K,Yamano-Adachi N,Koga Y,et al.Analysis of the immunoglobulin G(Ig G)secretion efficiency in recombinant Chinese hamster ovary(CHO)cells by using Citrine-fusion Ig G[J].Cytotechnology,2019,71(1):193-207.
    [73]Gomez N,Ambhaikar M,Zhang L,et al.Analysis of Tubespins as a suitable scale-down model of bioreactors for high cell density CHO cell culture[J].Biotechnol Prog,2017,33(2):490-499.
    [74]Costello A,Coleman O,Lao N T,et al.Depletion of endogenous miRNA-378-3p increases peak cell density of CHO DP12 cells and is correlated with elevated levels of ubiquitin carboxyl-terminal hydrolase 14[J].J Biotechnol,2018,288:30-40.
    [75]Tan J G,Lee Y Y,Wang T,et al.Heat shock protein 27 overexpression in CHO cells modulates apoptosis pathways and delays activation of caspases to improve recombinant monoclonal antibody titre in fed-batch bioreactors[J].Biotechnol J,2015,10(5):790-800.
    [76]Du Z,Treiber D,Mc Carter J D,et al.Use of a small molecule cell cycle inhibitor to control cell growth and improve specific productivity and product quality of recombinant proteins in CHO cell cultures[J].Biotechnol Bioeng,2015,112(1):141-155.
    [77]Raab N,Mathias S,Alt K,et al.CRISPR/Cas9-mediated knockout of microRNA-744 improves antibody titer of CHO production cell lines[J].Biotechnol J,2019,14,DOI:10.1002/biot.201800477.
    [78]Ibarra N,Watanabe S,Bi J X,et al.Modulation of cell cycle for enhancement of antibody productivity in perfusion culture of NS0cells[J].Biotechnol Prog,2003,19(1):224-228.
    [79]Steere N,Wagner M,Beishir S,et al.Centrosome amplification in CHO and DT40 cells by inactivation of cyclin-dependent kinases[J].Cytoskeleton(Hoboken),2011,68(8):446-458.
    [80]Lee Y Y,Wong K T,Tan J,et al.Overexpression of heat shock proteins(HSPs)in CHO cells for extended culture viability and improved recombinant protein production[J].J Biotechnol,2009,143(1):34-43.
    [81]Yamano N,Omasa T.EGCG improves recombinant protein productivity in Chinese hamster ovary cell cultures via cell proliferation control[J].Cytotechnology,2018,70(6):1697-1706.
    [82]Prabhu A,Gadgil M.Nickel and cobalt affect galactosylation of recombinant Ig G expressed in CHO cells[J].Biometals,2019,32(1):11-19.
    [83]Wada R,Matsui M,Kawasaki N.Influence of N-glycosylation on effector functions and thermal stability of glycoengineered Ig G1monoclonal antibody with homogeneous glycoforms[J].MAbs,2019,11(2):350-372.
    [84]Cadena A P,Cushman T R,Welsh J W.Glycosylation and antitumor immunity[J].Int Rev Cell Mol Biol,2019,343:111-127.
    [85]Wong A W,Baginski T K,Reilly D.E.Enhancement of DNA uptake in FUT8-deleted CHO cells for transient production of afucosylated antibodies[J].Biotechnol Bioeng,2010,106(5):751-763.
    [86]Louie S,Haley B,Marshall B,et al.FX knockout CHO hosts can express desired ratios of fucosylated or afucosylated antibodies with high titers and comparable product quality[J].Biotechnol Bioeng,2017,114(3):632-644.
    [87]Chung S,Quarmby V,Gao X,et al.Quantitative evaluation of fucose reducing effects in a humanized antibody on Fcgamma receptor binding and antibody-dependent cell-mediated cytotoxicity activities[J].MAbs,2012,4(3):326-340.
    [88]Lin N,Mascarenhas J,Sealover N R,et al.Chinese hamster ovary(CHO)host cell engineering to increase sialylation of recombinant therapeutic proteins by modulating sialyltransferase expression[J].Biotechnol Prog,2015,31(2):334-346.
    [89]Wong N S,Yap M G,Wang D I.Enhancing recombinant glycoprotein sialylation through CMP-sialic acid transporter over expression in Chinese hamster ovary cells[J].Biotechnol Bioeng,2006,93(5):1005-1016.
    [90]Zhang L,Castan A,Stevenson J,et al.Combined effects of glycosylation precursors and lactate on the glycoprofile of Ig G produced by CHO cells[J].J Biotechnol,2019,289:71-79.
    [91]Lee J S,Grav L M,Lewis N E,et al.CRISPR/Cas9-mediated genome engineering of CHO cell factories:Application and perspectives[J].Biotechnol J,2015,10(7):979-994.
    [92]Kotidis P,Jedrzejewski P,Sou S N,et al.Model-based optimisation of antibody galactosylation in CHO cell culture[J].Biotechnol Bioeng,2019,116:1612-1626.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700