用户名: 密码: 验证码:
贵州兴仁煤矿开采旧址重金属Cd、Hg和As在常见蕨类及其根际土壤中的含量与积累特征研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Concentrations and Accumulation of Cd,Hg and As in Common Pteridophytes and Their Rhizosphere Soils at an Abandoned Coal Mine in Xingren,Guizhou
  • 作者:罗沐欣键 ; 李盼 ; 许志东 ; 梁隆超 ; 仇广乐
  • 英文作者:LUO Muxinjian;LI Pan;XU Zhidong;LIANG Longchao;QIU Guangle;State Key Laboratory of Environmental Geochemistry,Institute of Geochemistry,Chinese Academy of Sciences;University of Chinese Academy of Sciences;College of Resource and Environmental Engineering,Guizhou University;
  • 关键词:煤矿区 ; 重金属 ; 蕨类 ; 污染特征 ; 生态风险
  • 英文关键词:coal mining area;;heavy metals;;pteridophyte;;contamination;;ecological risk
  • 中文刊名:地球与环境
  • 英文刊名:Earth and Environment
  • 机构:中国科学院地球化学研究所环境地球化学国家重点实验室;中国科学院大学;贵州大学资源与环境工程学院;
  • 出版日期:2019-09-25 11:11
  • 出版单位:地球与环境
  • 年:2019
  • 期:05
  • 基金:国家自然科学基金项目(41573135)
  • 语种:中文;
  • 页:58-65
  • 页数:8
  • CN:52-1139/P
  • ISSN:1672-9250
  • 分类号:X752;X53
摘要
本文对贵州兴仁某处煤矿区旧址自然定居的优势蕨类7科10属(分别为蕨菜、华中介蕨、栗蕨、狗脊、芒萁、顶芽狗脊、耳羽岩蕨、光里白、蜈蚣草和岭南铁角蕨)及其根际土壤重金属(Cd、Hg和As)含量进行了调查分析。结果表明,植物根际土壤Cd含量为0. 03~1. 9 mg/kg,超过了国家土壤二级标准; Hg和As含量分别为0. 5~15 mg/kg和537~5 330 mg/kg,均超过了国家土壤三级标准,其中As超标严重。蕨类植物中蜈蚣草富集As效果最佳,地上部分As含量达1 710 mg/kg,转运系数为1. 4。岭南铁角蕨地上部分Cd含量可高达1 490μg/kg,转运系数达56,具有极强的Cd富集能力。通过相关性分析发现,蕨类吸收Cd和As的量与根际土p H呈显著正相关关系(P<0. 05),吸Hg量则与p H呈显著负相关(P<0. 05)。土壤中重金属的可交换态与蕨类对重金属的吸收总量均呈显著正相关关系(P<0. 05)。单因子污染指数法计算结果显示,废渣堆附近土壤Hg和As污染十分严重,其中As污染已扩散到下游区域。潜在生态风险程度评估表明,该煤矿区重金属Cd、Hg和As复合污染严重,其高风险程度应引起相关部门重视。
        Concentrations of hazardous elements( Cd,Hg and As) in dominant pteridophytes of 7 families and 10 genera( Pteridium aquilinum,Deparia okuboana,Histiopteris incisa,Woodwardia japonica,Dicranopteris pedata,Woodwardia unigemmata,Woodsia polystichoides,Diplopterygium chinese,Pteris vittata and Asplenium sampsonii) and their rhizosphere soil at a coal mine site of Xingren,Guizhou province,were analyzed. The result showed concentrations of Cd in rhizosphere soils were 0. 03-1. 90 mg/kg and exceeded the national soil secondary standard. The concentrations of Hg and As were 0. 5-15 mg/kg and 537-5 330 mg/kg,respectively,and both exceeded the national soil third-level standard. Among collected pteridophytes,Pteris vittata exhibited a strong enrichment of As,the highest As concentration in their aboveground parts was as high as 1 710 mg/kg and the transport coefficient reached 1. 4. The concentration of Cd in aboveground parts of Asplenium sampsonii reached 1. 49 mg/kg and the transport coefficient was 56,showing a strong enrichment of Cd. The correlation analysis showed that the amounts of Cd and As accumulated by ferns were positively correlated with the p H of rhizosphere soils( P<0. 05) and negatively correlated with Hg( P<0. 05). The exchangeable fraction of hazardous elements in soil was positively correlated with their total amounts in ferns( P<0. 05). The single factor pollution index showed that soils near the coal mining waste residue were heavily contaminated by Hg and As,and the latter spread to the downstream area. The potential ecological risk assessment showed that the combined pollution of Cd,Hg and As in the coal mining area was at the serious level,demanding public concerns.
引文
[1]李榜江.贵州山区煤矿废弃地重金属污染评价及优势植物修复效应研究[D].重庆:西南大学,2014.
    [2]王幼奇,白一茹,王建宇.引黄灌区不同尺度农田土壤重金属空间分布及污染评价:以银川市兴庆区为例[J].环境科学,2014,35(7):2714-2720.
    [3]张金莲,丁疆峰,卢桂宁,等.广东清远电子垃圾拆解区农田土壤重金属污染评价[J].环境科学,2015,36(7):2633-2640.
    [4] Brooks R R,Lee J,Reeves R D,et al. Detection of nickeliferous rocks by analysis of herbarium specimens of indicator plants[J]. Journal of Geochemical Exploration,1977,7(1):49-57.
    [5]杨桂英.蕨类植物修复重金属污染的应用研究进展[J].江苏农业科学,2016,44(5):10-14.
    [6]陈同斌,韦朝阳,黄泽春,等.砷超富集植物蜈蚣草及其对砷的富集特征[J].科学通报,2002(3):207-210.
    [7]汪结明,王良桂,樊亚珍,等.3种蕨类植物对锰污染土壤的耐受性及生理响应[J].复旦学报(自然科学版),2016(3):397-403.
    [8]刘威,束文圣,蓝崇钰.宝山堇菜(Viola baoshanensis)———一种新的镉超富集植物[J].科学通报,2003(19):2046-2049.
    [9]庞文品,秦樊鑫,吕亚超,等.贵州兴仁煤矿区农田土壤重金属化学形态及风险评估[J].应用生态学报,2016,27(5):1468-1478.
    [10] Chen J,Wei F,Zheng C,et al. Background concentrations of elements in soils of China[J]. Water Air&Soil Pollution,1991,57-58(1):699-712.
    [11] Fang X B,Shi J,Liao X F,et al. Heavy metal pollution characteristics and ecological risk analysis for soil in Phyllostachys praecox stands of Lin'an[J]. Ying Yong Sheng Tai Xue Bao,2015,26(6):1883-1891.
    [12] Hakanson L. An ecological risk index for aquatic pollution control.a sedimentological approach[J]. Water Research,1980,14(8):975-1001.
    [13] Xu Z. Calculation of heavy metal’s toxicity coefficient in the evaluation of Potential Ecological Risk Index[J]. Environmental Science&Technology,2008.
    [14]刘文政,李存雄,秦樊鑫,等.高砷煤矿区土壤重金属污染及潜在的生态风险[J].贵州农业科学,2015,43(7):181-185.
    [15]吴攀,裴廷权,冯丽娟,等.贵州兴仁煤矿区土壤表土与沉积物中砷的环境调查研究[J].地球与环境,2006,34(4):31-35.
    [16]毛海涛.贵州典型矿区煤矸石自然风化过程中汞的环境效应初步分析[D].贵阳:贵州大学,2009.
    [17] Indriolo E. A Vacuolar arsenite transporter necessary for arsenic tolerance in the arsenic hyperaccumulating fern Pteris vittata is missing in flowering plants[J]. The Plant Cell,2010,6(22).
    [18]郭晋君,张沛,杏艳,等.pH对土壤吸附重金属镉的影响[J].广东化工,2013,40(8):116-117.
    [19]化玉谨,张敏英,陈明,等.炼金区土壤中汞形态分布及其生物有效性[J].环境化学,2015,34(2):234-240.
    [20]韩春梅,王林山,巩宗强,等.土壤中重金属形态分析及其环境学意义[J].生态学杂志,2005(12):1499-1502.
    [21]李宇庆,陈玲,仇雁翎,等.上海化学工业区土壤重金属元素形态分析[J].生态环境,2004(2):154-155.
    [22] Tessier A. Sequential extraction procedure for the speciation of particulate trace metals[J]. Analytical Chemistry,1979,51.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700