用户名: 密码: 验证码:
喷施烯效唑(S3307)对2种生态型鬼针草镉积累的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Effects of Spraying Uniconazole (S3307) on Cadmium Accumulation of Two Ecotypes of Bidens pilosa
  • 作者:黄科文 ; 山诗瑶 ; 陆春艳 ; 欧若含 ; 岁立云 ; 王铤 ; 刘磊 ; 廖明安 ; 林立金 ; 任纬
  • 英文作者:HUANG Ke-wen;SHAN Shi-yao;LU Chun-yan;OU Ruo-han;SUI Li-yun;WANG Ting;LIU Lei;LIAO Ming-an;LIN Lijin;REN Wei;College of Horticulture,Sichuan Agricultural University;Chongzhou Educational and Training Center;Chengdu Academy of Agriculture and Forestry Sciences;Institute of Pomology and Olericulture,Sichuan Agricultural University;Institute of Maize Research,Neijiang Academy of Agricultural Sciences;
  • 关键词:烯效唑(S3307) ; 鬼针草 ; 生态型 ; 植物修复 ;
  • 英文关键词:uniconazole(S3307);;Bidens pilosa;;ecotype;;phytoremediation;;cadmium
  • 中文刊名:生态与农村环境学报
  • 英文刊名:Journal of Ecology and Rural Environment
  • 机构:四川农业大学园艺学院;崇州职业教育培训中心;成都市农林科学院;四川农业大学果蔬研究所;四川省内江市农业科学院玉米研究所;
  • 出版日期:2019-09-23 13:56
  • 出版单位:生态与农村环境学报
  • 年:2019
  • 期:09
  • 基金:四川省教育厅项目(17ZB0342)
  • 语种:中文;
  • 页:104-110
  • 页数:7
  • CN:32-1766/X
  • ISSN:1673-4831
  • 分类号:X53;X173
摘要
随着土壤重金属污染的加剧,探究提高超富集植物对土壤修复效率的方法具有十分重要的现实意义。为揭示烯效唑(S3307)对超富集植物鬼针草(Bidens pilosa)生长和重金属积累的影响,通过盆栽试验,研究喷施不同浓度S3307溶液(0、25、50、75、100和125 mg·L~(-1))对2种生态型(农田生态型和矿山生态型)鬼针草生长和镉积累的影响。结果表明,与对照相比,S3307对2种生态型鬼针草的生长均表现出抑制作用,显著降低其生物量及株高。与对照相比,S3307显著提高2种生态型鬼针草叶绿素a、叶绿素b和类胡萝卜素等光合色素以及镉含量。当ρ(S3307)为125 mg·L~(-1)时,农田生态型和矿山生态型鬼针草地上部分镉含量均达到最大值,分别比对照提高91.44%和77.79%。对鬼针草镉积累量而言,当ρ(S3307)为25 mg·L~(-1)时2种生态型鬼针草地上部分和整株镉积累量均达到最大值。适当浓度的S3307可以有效提高农田生态型和矿山生态型鬼针草对镉污染土壤的修复能力,当ρ(S3307)为25 mg·L~(-1)时效果最好。
        With the intensification of soil heavy metal contamination, it is of great practical to explore ways to improve the soil remediation efficiency by hyperaccumulator plants. To reveal the effects of uniconazole(S3307) on the growth and heavy metal accumulation of hyperaccumulator plants, pot experiment was conducted to study the effects of spraying S3307 solution with different concentrations(0, 25, 50, 75, 100 and 125 mg·L~(-1)) on the growth and cadmium accumulation of two ecotypes(farmland and mining) of Bidens pilosa. The results show that S3307 inhibited the growth of both the two ecotypes of Bidens pilosa by significantly decreasing the biomass and plant height. Compared with the control, S3307 significantly increased the photosynthetic pigment(chlorophyll a, chlorophyll b and carotenoid) contents and cadmium contents in two ecotypes of Bidens pilosa. When the concentration of S3307 was 125 mg·L~(-1), the cadmium contents in the shoots of farmland and mining ecotypes of Bidens pilosa got the maximum, which were 91.44% and 77.79% higher, respectively, than the control. For the cadmium accumulation amount of Bidens pilosa, the cadmium accumulation amount by the shoots and whole plants of two ecotypes of Bidens pilosa got the maximum when the concentration of S3307 was 25 mg·L~(-1). The suitable concentrations of S3307 could effectively improve the remediation ability of farmland and mining ecotypes of Bidens pilosa to cadmium-contaminated soil, and the best dose is 25 mg·L~(-1).
引文
[1] CHEN T,CHANG Q R,LIU J,et al.Identification of Soil Heavy Metal Sources and Improvement in Spatial Mapping Based on Soil Spectral Information:A Case Study in Northwest China[J].Science of the Total Environment,2016,565:155-164.
    [2] LI X,ZHANG X M,LI B Q,et al.Cadmium Phytoremediation Potential of Turnip Compared With Three Common High Cd-Accumulating Plants[J].Environmental Science and Pollution Research,2017,24(27):21660-21670.
    [3] SARWAR N,IMRAN M,SHAHEEN M R,et al.Phytoremediation Strategies for Soils Contaminated With Heavy Metals:Modifications and Future Perspectives[J].Chemosphere,2017,171:710-721.
    [4] MAESTRI E,MARMIROLI M,VISIOLI G,et al.Metal Tolerance and Hyperaccumulation:Costs and Trade-Offs Between Traits and Environment[J].Environmental and Experimental Botany,2010,68(1):1-13.
    [5] PáL M,JANDA T,SZALAI G.Interactions Between Plant Hormones and Thiol-Related Heavy Metal Chelators[J].Plant Growth Regulation,2018,85(2):173-185.
    [6] JI P H,TANG X W,JIANG Y J,et al.Potential of Gibberellic Acid 3 (GA3) for Enhancing the Phytoremediation Efficiency of Solanum nigrum L.[J].Bulletin of Environmental Contamination and Toxicology,2015,95(6):810-814.
    [7] 何冰,陆覃昱,李彦彦,等.不同生长调节剂对东南景天镉积累的影响[J].农业环境科学学报,2014,33(8):1538-1545.[HE Bing,LU Qin-yu,LI Yan-yan,et al.Effects of Different Growth Regulators on Cadmium Accumulation by Sedum alfredii H[J].Journal of Agro-Environment Science,2014,33(8):1538-1545.]
    [8] WANG J,LIN L J,LUO L,et al.The Effects of Abscisic Acid (ABA) Addition on Cadmium Accumulation of Two Ecotypes of Solanum photeinocarpum[J].Environmental Monitoring and Assessment,2016,188(3):182.
    [9] F?SSLER E,EVANGELOU M W,ROBINSON B H,et al.Effects of Indole-3-Acetic Acid (IAA) on Sunflower Growth and Heavy Metal Uptake in Combination With Ethylene Diamine Disuccinic Acid (EDDS)[J].Chemosphere,2010,80(8):901-907.
    [10] TASSI E,POUGET J,PETRUZZELLI G,et al.The Effects of Exogenous Plant Growth Regulators in the Phytoextraction of Heavy Metals[J].Chemosphere,2008,71(1):66-73.
    [11] AHMAD I,KAMRAN M,ALI S,et al.Uniconazole Application Strategies to Improve Lignin Biosynthesis,Lodging Resistance and Production of Maize in Semiarid Regions[J].Field Crops Research,2018,222:66-77.
    [12] FLETCHER R A,HOFSTRA G.Triadimefon a Plant Multi-Protectant[J].Plant and Cell Physiology,1985,26(4):775-780.
    [13] 李宁毅,王吉振,时彦平.烯效唑(S3307)对矮牵牛幼苗耐盐性的调节效应[J].沈阳农业大学学报,2011,42(6):668-671.[LI Ning-yi,WANG Ji-zhen,SHI Yan-ping.Regulation of Salt Tolerance by Uniconazole(S3307) on Petunia hybrida Seedlings[J].Journal of Shenyang Agricultural University,2011,42(6):668-671.]
    [14] LIU Y,FANG Y,HUANG M J,et al.Uniconazole-Induced Starch Accumulation in the Bioenergy Crop Duckweed (Landoltia punctata) Ⅱ:Transcriptome Alterations of Pathways Involved in Carbohydrate Metabolism and Endogenous Hormone Crosstalk[J].Biotechnology for Biofuels,2015,8:64.
    [15] HUANG M J,FANG Y,LIU Y,et al.Using Proteomic Analysis to Investigate Uniconazole-Induced Phytohormone Variation and Starch Accumulation in Duckweed (Landoltia punctata)[J].BMC Biotechnology,2015,15:81.
    [16] HE J,LIN L J,MA Q Q,et al.Uniconazole (S-3307) Strengthens the Growth and Cadmium Accumulation of Accumulator Plant Malachium aquaticum[J].International Journal of Phytoremediation,2017,19(4):348-352.
    [17] SUN Y B,ZHOU Q X,WANG L,et al.Cadmium Tolerance and Accumulation Characteristics of Bidens pilosa L.as a Potential Cd-Hyperaccumulator[J].Journal of Hazardous Materials,2009,161(2/3):808-814.
    [18] WEI S H.A Newly-Discovered Cd-Hyperaccumulator Solanum nigrum L.[J].Chinese Science Bulletin,2005,50(1):33.
    [19] ZHANG S R,LIN H C,DENG L J,et al.Cadmium Tolerance and Accumulation Characteristics of Siegesbeckia orientalis L.[J].Ecological Engineering,2013,51:133-139.
    [20] LI Y,ZU Y Q,FANG Q X,et al.Characteristics of Heavy-Metal Tolerance and Growth in Two Ecotypes of Oxyria sinensis Hemsl.Grown on Huize Lead-Zinc Mining Area in Yunnan Province,China[J].Communications in Soil Science and Plant Analysis,2013,44(16):2428-2442.
    [21] 黄科文,廖明安,林立金.2种生态型三叶鬼针草的不同株数混种比例对其镉累积的影响[J].生态与农村环境学报,2015,31(5):753-759.[HUANG Ke-wen,LIAO Ming-an,LIN Li-jin.Effects of Interplantation Ratio of Two Ecotypes of Bidens pilosa on Cadmium Accumulation[J].Journal of Ecology and Rural Environment,2015,31(5):753-759.]
    [22] 林立金,廖明安,梅洛银,等.不同生态型小飞蓬对镉胁迫砧木樱桃植株磷钾吸收的影响[J].中国生态农业学报,2013,21(12):1565-1568.[LIN Li-jin,LIAO Ming-an,MEI Luo-yin,et al.Effect of Conyza Canadensis of Different Ecotypes on Phosphorus and Potassium Uptake of Rootstock Cherry Under Cadmium Stress[J].Chinese Journal of Eco-Agriculture,2013,21(12):1565-1568.]
    [23] 李合生.植物生理生化实验原理和技术[M].北京:高等教育出版社,2000:130-134.
    [24] 鲍士旦.土壤农化分析[M].北京:中国农业出版社,2000:373.
    [25] ZHANG X F,XIA H P,LI Z A,et al.Identification of a New Potential Cd-Hyperaccumulator Solanum photeinocarpum by Soil Seed Bank-Metal Concentration Gradient Method[J].Journal of Hazardous Materials,2011,189(1/2):414-419.
    [26] RASTMANESH F,MOORE F,KESHAVARZI B.Speciation and Phytoavailability of Heavy Metals in Contaminated Soils in Sarcheshmeh Area,Kerman Province,Iran[J].Bulletin of Environmental Contamination and Toxicology,2010,85(5):515-519.
    [27] ZHANG X F,XIA H P,LI Z A,et al.Potential of Four Forage Grasses in Remediation of Cd and Zn Contaminated Soils[J].Bioresource Technology,2010,101(6):2063-2066.
    [28] 张宗俭,李斌.世界农药大全[M].北京:化学工业出版社,2011:263-265.
    [29] 丁华侨,刘建新,王炜勇,等.烯效唑对姜荷花的矮化效果及组织解剖研究[J].浙江农业学报,2013,25(5):975-979.[DING Hua-qiao,LIU Jian-xin,WANG Wei-yong,et al.Dwarfing Effect of Uniconazole on Curcuma alismatifolia and Its Tissue Anatomy[J].Acta Agriculturae Zhejiangensis,2013,25(5):975-979.]
    [30] 杨宗保,王延峰,王凯,等.烯效唑对盆栽山丹丹生长发育的影响[J].天津农业科学,2015,21(3):110-112.[YANG Zong-bao,WANG Yan-feng,WANG Kai,et al.Effects of S3307 on Growth and Development of Potting Lily (Lilium pumilum)[J].Tianjin Agricultural Sciences,2015,21(3):110-112.]
    [31] 马冲,张成玲,刘震,等.烯效唑对花生生长调节作用研究[J].中国农学通报,2012,28(24):222-225.[MA Chong,ZHANG Cheng-ling,LIU Zhen,et al.Study on the Effect of Uniconazole on Regulating Growth of Peanut[J].Chinese Agricultural Science Bulletin,2012,28(24):222-225.]
    [32] 刘良全.小麦根系对盐、旱胁迫的生物学响应及其化学调控研究[D].临汾:山西师范大学,2010:1-66.[LIU Liang-quan.Effect of Seed Soaking With Chemical Regulators on Root of Wheat Under NaCl and Drought Stress[D].Linfen:Shanxi Normal University,2010:1-66.]
    [33] STOBART A K,GRIFFITHS W T,AMEEN-BUKHARI I,et al.The Effect of Cd2+ on the Biosynthesis of Chlorophyll in Leaves of Barley[J].Physiologia Plantarum,1985,63(3):293-298.
    [34] 郑春芳,陈继浓,仇建标,等.烯效唑对低温胁迫下秋茄幼苗光合作用与抗氧化系统的影响[J].植物生理学报,2016,52(1):109-116.[ZHENG Chun-fang,CHEN Ji-nong,QIU Jian-biao,et al.Effect of Uniconazole on Photosynthesis and Antioxidant System in Kandelia obovata Seedlings Under Low Temperature Stress[J].Plant Physiology Journal,2016,52(1):109-116.]
    [35] 黄爱政,刘晓静,康云艳,等.脱落酸和烯效唑对菜心光合作用的影响[J].广东农业科学,2012,39(22):77-79.[HUANG Ai-zheng,LIU Xiao-jing,KANG Yun-yan,et al.Effects of Abscisic Acid and Uniconazole on Photosynthesis of Flowering Chinese Cabbage[J].Guangdong Agricultural Sciences,2012,39(22):77-79.]
    [36] 俞美玉,王熹,陶龙兴,等.烯效唑对小麦成熟期间叶片光合同化能力及产物分配的影响[J].核农学报,1995(2):102-106.[YU Mei-yu,WANG Xi,TAO Long-xing,et al.Effect of S-07 on 14CO2 Assimilation and Distribution of Assimilates During Ripening Stage of Wheat[J].Journal of Nuclear Agricultural Sciences,1995(2):102-106.]
    [37] 丁川,宋柏权.植物生长调节剂在糖料作物上的应用及展望[J].中国农学通报,2017,33(9):27-30.[DING Chuan,SONG Bai-quan.Application and Prospects of Plant Growth Regulator on Sugar Crops[J].Chinese Agricultural Science Bulletin,2017,33(9):27-30.]
    [38] 于彩莲.生长调节剂强化龙葵修复镉污染土壤能力的研究[D].哈尔滨:哈尔滨理工大学,2011.[YU Cai-lian.Study on the Plant Growth Regulator Enhancing Remediation Efficiency of Solanum nigrum L.on Contaminated Soil by Cadmium[D].Harbin:Harbin University of Science and Technology,2011.]
    [39] 廖爽.螯合剂EDDS与生长调节剂对牛膝菊(Galinsoga parviflora)富集镉的影响[D].雅安:四川农业大学,2016.[LIAO Shuang.Effects of EDDS and Plant Growth Regulator on Enhancing Phytoextraction of Cd by Galinsoga parviflora[D].Yaan:Sichuan Agricultural University,2016.]

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700