用户名: 密码: 验证码:
含砷废水水热法臭葱石沉砷
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Scorodite precipitation from arsenic-containing wastewater by hydrothermal method
  • 作者:张俊 ; 李存兄 ; 魏昶 ; 樊刚 ; 李兴彬 ; 邓志敢 ; 李旻廷 ; 张鹏
  • 英文作者:ZHANG Jun;LI Cun-xiong;WEI Chang;FAN Gang;LI Xing-bin;DENG Zhi-gan;LI Min-ting;ZHANG Peng;Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology;
  • 关键词:含砷废水 ; 臭葱石 ; 沉砷率 ; 沉铁率 ; 铁矾
  • 英文关键词:arsenic-containing wastewater;;scorodite;;arsenic removal rate;;iron removal rate;;jarosite
  • 中文刊名:中国有色金属学报
  • 英文刊名:The Chinese Journal of Nonferrous Metals
  • 机构:昆明理工大学冶金与能源工程学院;
  • 出版日期:2019-06-15
  • 出版单位:中国有色金属学报
  • 年:2019
  • 期:06
  • 基金:国家自然科学基金资助项目(51664038,51474117,51364022)~~
  • 语种:中文;
  • 页:161-170
  • 页数:10
  • CN:43-1238/TG
  • ISSN:1004-0609
  • 分类号:X703
摘要
本文以铜冶炼过程所产生的含砷废水为研究对象,研究了Fe/As摩尔比、初始pH值、氧分压、反应时间以及反应温度等宏观技术参数对水热臭葱石沉砷过程及沉砷渣物相转变的影响规律。结果表明:在Fe/As摩尔比1.5、初始pH1.0、反应温度160℃、搅拌转速500 r/min、氧分压0.6 MPa和反应时间3 h的优化技术条件下,砷与铁的沉淀率分别为98.09%和87.64%,获得了纯度较高的臭葱石沉砷渣;沉砷渣中砷、铁及硫的含量分别为22.21%、25.36%及3.34%,其中硫主要以亚稳态铁矾的形式存在;降低Fe/As摩尔比和初始pH值、延长反应时间均有利于亚稳态铁矾的返溶、重结晶,进而形成性质稳定的臭葱石物相。
        In this paper, the arsenic-containing wastewater produced by the copper smelting process was studied. The effects of macroscopic technical parameters, such as Fe/As molar ratio, initial pH, reaction temperature, oxygen partial pressure and reaction time, on the arsenic precipitate process and the phase transformation of scorodite precipitate were investigated. The experimental results indicate that, under hydrothermal conditions of initial Fe/As molar ratio of 1.5,initial pH of 1, temperature of 160 ℃, agitation speed of 500 r/min, oxygen partial pressure of 0.6 MPa and reaction time of 3 h, the arsenic and iron removal rates are 98.09% and 87.64%, respectively, the contents of As, Fe and S in scorodite precipitate are 22.21%, 25.36% and 3.34%, respectively, and the sulfur is mainly in the form of jarosite. Reducing the Fe/As molar ratio and initial pH, and extending the reaction time are all favorable for re-dissolution of metastable jarosite and recrystallization to form the stable scorodite phase.
引文
[1]张旭,刘志宏,李玉虎,刘智勇,李启厚.苛性碱溶液氧压浸出高砷锑烟尘[J].中南大学学报(自然科学版),2014, 45(5):1390-1396.ZHANG Xu, LIU Zhi-hong, LI Yu-hu, LIU Zhi-yong, LI Qi-hou. Oxygen pressure leaching of arsenic and antimony bearing flue dust in NaOH solution[J]. Journal of Central South University(Science and Technology), 2014, 45(5):1390-1396.
    [2]张焕然,刘晓英,衷水平,伍赠玲,蓝碧波,王俊娥.富铼砷滤饼加压浸出工艺研究[J].中国有色冶金, 2015,44(5):59-62.ZHANG Huan-ran, LIU Xiao-ying, ZHONG Shui-ping, WU Zeng-ling, LAN Bi-bo, WANG Jun-e. Pressure leaching technique of smelter dust with high-copper and high-arsenic[J].China Nonferrous Metallurgy, 2015, 44(5):59-62.
    [3]徐志峰,聂华平,李强,卢秋虎,王巍,月日辉.高铜高砷烟灰加压浸出工艺[J].中国有色金属学报, 2008,18(S1):s59-s63.XU Zhi-feng, NIE Hua-ping, LI Qiang, LU Qiu-hu, WANG Wei, YUE Ri-hui. Study on pressure leaching process of arsenic-rhenium filter cake[J]. The Chinese Journal of Nonferrous Metals, 2008, 18(S1):s59-s63.
    [4]易宇,石靖,田庆华,郭学益.高砷烟尘碱浸渣制备焦锑酸钠的新工艺[J].中国有色金属学报, 2015, 25(1):241-249.YI Yu, SHI Jing, TIAN Qing-hua, GUO Xue-yi. Novel technology for preparation of sodium pyroantimonate from alkali leaching residue of high arsenic dust[J]. The Chinese Journal of Nonferrous Metals, 2015, 25(1):241-249.
    [5]李阔,徐瑞东,何世伟,陈汉森,朱云,华宏全,舒波.采用碱性加压氧化浸出从高铋铅阳极泥中脱除砷锑[J].中国有色金属学报, 2015, 25(5):1394-1402.LI Kuo, XU Rui-dong, HE Shi-wei, CHEN Han-sen, ZHU Yun, HUA Hong-quan, SHU Bo. Arsenic and antimony removal from bismuth-rich lead anode slime by alkaline pressure oxidation leaching[J]. The Chinese Journal of Nonferrous Metals, 2015, 25(5):1394-1402.
    [6]袁铁锤,周科朝, JIA Yong-feng, DEMOPOULOS G P.结晶型砷酸镍的溶解性[J].化工学报, 2006, 57(1):122-125.YUAN Tie-chui, ZHOU Ke-chao, JIA Yong-feng,DEMOPOULOS G P. Solubility of annabergite[J]. CIESC Journal, 2006, 57(1):122-125.
    [7]方兆珩,石伟,韩宝玲,夏光祥.高砷溶液中和脱砷过程[J].化工冶金, 2000, 21(4):359-362.FANG Zhao-heng, SHI Wei, HAN Bao-ling, XIA Guang-xiang. Removal of arsenic from high arsenic solutions by scorodite precipitation[J]. Engineering Chemistry&Metallurgy, 2000, 21(4):359-362.
    [8] OEHMEN A, VALERIO R, LANOS J, FRADNHOJ,SERRAS, MARIAA, REIS M, JOAO, CRESPOG,SVETLOZAR V. Arsenic removal from drinking water through a hybrid ion exchange membrane—Coagulation process[J]. Separation and Purification Technology, 2011, 83:137-143.
    [9]孙桂琴,王见华,殷茵,梁小敏,胡尚义.蜈蚣草湿地系统处理含砷废水的研究[J].江西化工, 2008(3):102-105.SUN Gui-qin, WANG Jian-hua, YIN Yin, LIANG Xiao-min,HU Shang-yi. Study on treatment of wastewater containing arsenic by centipede grassland wetland system[J]. Jiangxi Chemical Industry, 2008(3):102-105.
    [10]郑雅杰,张胜华,龚昶.含砷污酸资源化回收铜和砷的新工艺[J].中国有色金属学报, 2013, 23(10):2985-2992.ZHENG Ya-jie, ZHANG Sheng-hua, GONG Chang. Novel technique for recovery of copper and arsenic from arsenic-containing waste acid[J]. The Chinese Journal of Nonferrous Metals, 2013, 23(10):2985-2992.
    [11]曹俊雅,叶栩文,杜娟,赵欢,张广积,杨超.铁氧化菌对含砷溶液中砷沉淀和臭葱石晶体形成的影响[J].过程工程学报, 2015, 15(2):307-312.CAO Jun-ya, YE Xu-wen, DU Juan, ZHAO Huan, ZHANG Guan-ji, YANG Chao. Effects of iron oxidation bacteria on arsenic precipitation and the formation of crystalline scorodite from arsenic-containing solution[J]. The Chinese Journal of Process Engineering, 2015, 15(2):307-312.
    [12]柯平超,刘志宏,刘智勇,李玉虎,刘付朋.固砷矿物臭葱石组成与结构及其浸出稳定性研究现状[J].化工学报,2016, 67(11):4533-4540.KE Ping-chao, LIU Zhi-hong, LIU Zhi-yong, LI Yu-hu, LIU Fu-peng. Research status on composition, structure, and leaching stability of an arsenic solidification mineral scorodite[J]. CIESC Journal, 2016, 67(11):4533-4540.
    [13] WANG S, MULLIFAN C N. Occurrence of arsenic contamination in Canada:Sources, behavior and distribution[J].Science of the Total Environment, 2006, 366(2/3):701-721.
    [14]徐根福.处理高砷浓度工业废水的化学沉淀法[J].湿法冶金, 2009, 28(1):12-17.XU Gen-fu. Chemical precipitation methods for treatment of high-arsenic concentration industrial effluents[J].Hydrometallurgy of China, 2009, 28(1):12-17.
    [15]刘志宏,潘庆琳,刘智勇,李玉虎,李启厚. As(Ⅲ)在酸性水溶液中与金属铁的反应行为[J].中国有色金属学报,2015, 25(10):2945-2952.LIU Zhi-hong, PAN Qing-lin, LIU Zhi-gong, LI Yu-hu, LI Qi-hou. Reactive behaviors between As(Ⅲ)and metallic iron in acidic aqueous solution[J]. The Chinese Journal of Nonferrous Metals, 2015, 25(10):2945-2952.
    [16] DEMOPOULOS G P. On the preparation and stability of scorodite[C]//REDDY R G, RAMAEHANDRAN eds.Arsenic Metallurgy. Warrendale, PA:TMS, 2005:25-50.
    [17] MIN Xiao-bo, LIAO Ying-ping, CHAI Li-yuan, YANG Zhi-hui, XIONG Shan, LIU Lin, LI Qing-zhu. Removal and stabilization of arsenic from anode slime by forming crystal scorodite[J]. Transactions of Nonferrous Metals Society of China, 2015, 25(4):1298-1306.
    [18] FUJITA T R, TAGUDHI R, ABUMIYA M, MATSUMOTO M, SHIBATA E, NAKAMURA T. Novel atmospheric scorodite synthesis by oxidation of ferrous sulfate solution:PartⅠ[J]. Hydrometallugy, 2008, 90(2):92-102.
    [19] FUJITA TR, TAGUDHI R, ABUMIYA M, MATSUMOTO M, SHIBATA E, NAKAMURA T. Effect of p H on atmospheric scorodite synthesis by oxidation of ferrous ions:Physical properties and stability of the scorodite[J].Hydrometallurgy, 2009, 96(3):189-198.
    [20] BERRE J F L, GAUVIN R, DEMOPOULOS G P. A study of the crystallization kinetics of scorodite via the transformation of poorly crystalline ferric arsenate in weakly acidic solution[J]. Colloids&Surfaces A Physicochemical&Engineering Aspects, 2008, 315(1/3):117-129.
    [21] MAJZLAN J, DRAHOTA P, FILIPPI M, GREVEL K D,KAHL W A, PLASIL J, BOERIO-GOATES J, WOODFIELD B F. Thermodynamic properties of scorodite and parascorodita(Fe AsO4?3.5H2O), kankite(FeAsO4?2H2O)and FeAsO4[J].Hydrometallugy, 2012:117/118:47-56.
    [22] ITOU H, TAKASU T, UENO Y. Crystallization of the amorphous ferric arsenate in the saturated steam atmosphere[J]. High Temp Mater Processes(London), 2011,30(4/5):473-483.
    [23] MAMBOTE R C M, KRIJGSMAN P, REUTER M A.Hydrothermal precipitation of arsenic compounds in the ferric–arsenic(III)–sulfate system:Hermodynamic modeling[J].Minerals Engineering, 2003, 16(5):429-440.
    [24] GOMEZMA, BECZE L, CUTLERJN, DEMOPOULOSGP.Hydrothermal reaction chemistry and characterization of ferric arsenate phases precipitated from Fe2(SO4)3-As2O5-H2SO4 solutions[J]. Hydrometallurgy, 2011, 107(3/4):74-90.
    [25] KITAMURA Y, OKAWA H, KATO T, KATO T,SUGAWARA K. Size and morphology of scorodite particles synthesized using ultrasound irradiation[J]. Jpn J Appl Phys,2014, 53(7):467-468.
    [26]余自秀.含砷铁溶液水热臭葱石沉砷研究[D].昆明:昆明理工大学, 2017:30-90.YU Zi-xiu. Hydrothermal precipitation of arsenic in solution containing arsenic and iron based on scorodite formation[D].2017:30-90.
    [27]余自秀,李存兄,魏昶,杨晨年,邓志敢,李兴彬,樊刚.含砷铁溶液水热臭葱石沉砷研究[J].昆明理工大学学报(自然科学版), 2017, 42(1):1-8.YU Zi-xiu, LI Cun-xiong, WEI Chang, YANG Chen-nian,DENG Zhi-gan, LI Xing-bin, FAN Gang. Hydrothermal precipitation of arsenic in solution containing arsenic and iron based on scorodite formation[J]. Journal of Kunming University of Science and Technology(Natural Science Edition). 2017, 42(1):1-8.
    [28]李存兄,魏昶,邓志敢,李兴彬,樊刚,王益昭,易烁文,李旻廷. FeSO4-H2O体系中水热赤铁矿沉铁及亚稳态铁物相转变行为[J].中国有色金属学报, 2018, 28(3):628-636.LI Cun-xiong, WEI Chang, DENG Zhi-gan, LI Xing-bin,FAN Gang, WANG Yi-zhao, YI Shuo-wen, LI Min-ting.Hydrothermal hematite precipitation and conversion behavior of metastable iron phase in FeSO4-H2O system[J].The Chinese Journal of Nonferrous Metals, 2018, 28(3):628-636.
    [29] FUJITA T, TAGUDHI R, ABUMIYA M. Effects of zinc,copper and sodium ions on ferric arsenate precipitation in a novel atmospheric scorodite process[J]. Hydrometallurgy,2008, 93(1):30-38.
    [30] FUJITA T, TAGUDHI R, ABUMIYA M, MATSUMOTO M,SHIBATA E, NAKAMURA T. Novel atmospheric scorodite synthesis by oxidation of ferrous sulfate solution. PartⅡ.Effect of temperature and air[J]. Hydrometallurgy, 2008,90(2/4):85-91.
    [31] DUTRIZAC J E, JAMBOR J L. Characterization of the iron arsenate–sulphate compounds precipitated at elevated temperatures[J]. Hydrometallurgy, 2007, 86(3):147-163.
    [32] PAPANGELAKIS V G, BLAKEY B C, LIAO H. Hematite solubility in sulfate process solution[C]//Hydrometallurgy'94. Dordrecht:Springer, 1994:159-175.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700