用户名: 密码: 验证码:
桂北岩溶区典型农地土壤优先流特征
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Characteristics of Soil Preferential Flow in Typical Farmland in the Karst Area of North GuangXi
  • 作者:李振东 ; 朱彦光 ; 陈晓冰 ; 甘磊 ; 张宗急 ; 方荣杰 ; 程芳丽
  • 英文作者:LI Zhendong;ZHU Yanguang;CHEN Xiaobing;GAN Lei;ZHANG Zongji;FANG Rongjie;CHENG Fangli;College of Environmental Science and Engineering,Guilin University of Technology;Guangxi Collaborative Innovation Center for Water Pollution Control and Safety in Karst Area,Guilin University of Technology;Guangxi Key Laboratory of Environmental Pollution Control Theyory and Technology,Guilin University of Technology;Guilin Academy of Agricultural Sciences;
  • 关键词:优先流 ; 发育程度 ; 染色示踪法 ; 岩溶区
  • 英文关键词:preferential flow;;degree of development;;dye tracer method;;karst area
  • 中文刊名:水土保持研究
  • 英文刊名:Research of Soil and Water Conservation
  • 机构:桂林理工大学环境科学与工程学院;桂林理工大学广西岩溶地区水污染控制与用水安全保障协同创新中心;桂林理工大学广西环境污染控制理论与技术重点实验室;桂林市农业科学院;
  • 出版日期:2019-09-16
  • 出版单位:水土保持研究
  • 年:2019
  • 期:05
  • 基金:国家自然科学基金(41701248,41301289);; 广西自然科学资助项目(2017GXNSFBA198102,2016GXNSFAA380197);; 广西高校科研西南岩溶区典型农地土壤优先流形成及其运动机制研究资助项目(2017KY0270);; 广西环境污染控制理论与技术重点实验室研究资助项目(1701K009)
  • 语种:中文;
  • 页:74-80+86
  • 页数:8
  • CN:61-1272/P
  • ISSN:1005-3409
  • 分类号:S152.7
摘要
以广西桂北岩溶区的3种典型农地为研究对象,通过野外染色示踪试验,结合形态学、数理统计以及分形理论等方法,对岩溶区玉米地、花生地和水稻田的土壤优先流特征进行了研究。结果表明:在相同供水条件下,玉米地土壤水流运动形成的染色形态由大面积的块状变为树枝状,土壤在20—40 cm深度范围内存在较多侧向孔隙通道,染色形态表现为由树枝状又变为较小的团块状,而花生地和水稻田的土壤水流运动形成的染色形态均由大面积的块状变为指状,但花生地水分以优先流形式入渗时还伴有一定程度的侧向运移,呈现指状染色形态中夹有较小的团块状染色形态,水稻田指状染色形态中无明显团块;玉米地的平均基质流深度达5.55 cm,是花生地的1.18倍,优先流发生时间相对花生地滞后,水稻田的平均基质流深度仅为2.36 cm,其最先发生优先流现象;玉米地的平均总染色面积比、优先流比和湿润锋迹线的分形维数(32.09%,71.59%和1.34)是花生地的1.40,1.04,1.05倍,水稻田的平均总染色面积比、优先流比和湿润锋迹线的分形维数分别为12.55%,62.03%和1.26,均小于玉米地和花生地,表现为玉米地优先流发育程度最大,其次为花生地,水稻田优先流发育程度最小。
        This paper concentrates on three types of typical farmland in the karst area of north Guangxi. Through field dyeing tracer test, the characteristics of soil preferential flow in corn field, peanut fields and paddy field in karst area were studied by combining with morphological, mathematical statistics and fractal theory. The results show that under the same condition of water supply, the dyeing form of soil water flow in corn field change from massive block to branch shape; the soil has more lateral pore channels in the depth range of 20—40 cm, which shows that the dyeing changes from dendrites to smaller clumps; however, the soil water movement of peanut fields and paddy fields change from massive block to finger-like; when the water infiltrates into peanut fields soil in the form of preferential flow, it is accompanied by a certain degree of lateral migration, that is, there are small clumps in finger-like dyeing form, there were no obvious clumps in finger-like dyeing patterns of rice fields. The average depth of matrix flow is 5.55 cm in the corn field, which is 1.18 times higher than that of peanut fields. And the occurrence time of preferential flow falls behind that of peanut fields. However, the average depth of matrix flow fields is only 2.36 cm in paddy, and preferential flow is the fastest. The results show that the average total dyeing area ratio, preferential flow ratio and fractal dimension of wet front trace(32.09%, 71.59% and 1.34) of corn field are 1.40, 1.04 and 1.05 times higher than those of peanut fields, and the average total dyeing area ratio, preferential flow ratio and the fractal dimension of wetting front trace in the paddy field are 12.55%, 62.03% and 1.26, respectively. All of them are smaller than corn field and peanut fields. The results showed that the development degree of priority flow is the highest in corn field, followed by peanut fields, and the lowest in paddy field.
引文
[1] Dekker L W,Ritsema C J,Wendroth O,et al.Moisture distributions and wetting rates of soils at experimental fields in the Netherlands,France,Sweden and Germany[J].Journal of Hydrology,1999,215(1/4):4-22.
    [2] 盛丰,张利勇,吴丹.土壤优先流模型理论与观测技术的研究进展[J].农业工程学报,2016,32(6):1-10.
    [3] Chen C,Roseberg R J,Selker J S.Using microsprinkler irrigation to reduce leaching in a shrink/swell clay soil[J].Agricultural Water Management,2002,54(2):159-171.
    [4] Reichenberger S,Amelung W,Laabs V,et al.Pesticide displacement along preferential flow pathways in a Brazilian Oxisol[J].Geoderma,2002,110(1):63-86.
    [5] 王彬俨,程金花,张洪江,等.北京市昌平区农地土壤大孔隙形成的影响因素分析[J].西北农林科技大学学报:自然科学版,2013,41(5):81-86.
    [6] 陈晓冰,严磊,陈廷速,等.西南岩溶区粉垄耕作和免耕方式下甘蔗地土壤优先流特征[J].水土保持学报,2018,32(4):58-66.
    [7] Green R T,Bertetti F P,Miller M S.Focused groundwater flow in a carbonate aquifer in a semi-arid environment[J].Journal of Hydrology,2014,517(2):284-297.
    [8] Ayadi Y,Mokadem N,Besser H,et al.Hydrochemistry and stable isotopes(δ18O and δ2H)tools applied to the study of karst aquifers in southern mediterranean basin(Teboursouk area,NW Tunisia)[J].Journal of African Earth Sciences,2018,137:208-217.
    [9] Pacheco Castro R,Pacheco ávila J,Ye M,et al.Groundwater quality:Analysis of its temporal and spatial variability in a karst aquifer[J].Groundwater,2018,56(1):62-72.
    [10] Paquette M,Fortier D,Vincent W F.Hillslope water tracks in the High Arctic:Seasonal flow dynamics with changing water sources in preferential flow paths[J].Hydrological Processes,2018,32(8):1077-1089.
    [11] 蒋小金,王恩姮,陈祥伟,等.典型黑土耕地土壤优先流环绕特征[J].应用生态学报,2010,21(12):3127-3132.
    [12] 高朝侠,徐学选,宇苗子,等.黄土塬区土地利用方式对土壤大孔隙特征的影响[J].应用生态学报,2014,25(6):1578-1584.
    [13] 程金花,张洪江,史玉虎,等.长江三峡花岗岩区林地优先流影响因子分析[J].水土保持学报,2006,20(5):28-33.
    [14] 陈晓冰,张洪江,李世友,等.紫色砂岩区不同植被类型土壤优先流特征及其影响因素[J].中国水土保持科学,2014,12(6):42-49.
    [15] 王发,付智勇,陈洪松,等.喀斯特洼地退耕和耕作土壤优先流特征[J].水土保持学报,2016,30(1):111-116.
    [16] 程立平,刘文兆.黄土塬区几种典型土地利用类型的土壤水稳定同位素特征[J].应用生态学报,2012,23(3):651-658.
    [17] 陈国靖,蔡进军,马璠,等.宁夏黄土丘陵区典型林草植被类型对土壤水稳性团聚体的影响[J].水土保持研究,2018,25(5):49-53,60.
    [18] Flury M,Flühler H,Jury W A,et al.Susceptibility of soils to preferential flow of water:A field study[J].Water Resources Research,1994,30(7):1945-1954.
    [19] Schaik N L M B V.Spatial variability of infiltration patterns related to site characteristics in a semi-arid watershed[J].Catena,2009,78(1):36-47.
    [20] 彭进业,俞卞章,李楠,等.分形维数在灰度图像二值化中的应用[J].小型微型计算机系统,2001,22(8):961-963.
    [21] 肯尼思·法尔科内.分形几何:数学基础及其应用[M].沈阳:东北大学出版社,1999.
    [22] 杨洋,王卫星.基于差分计盒法和数学形态学的路面裂缝分割和提取方法[J].科学技术与工程,2013,13(23):6746-6750.
    [23] 张东旭,张洪江,程金花.基于多指标评价和分形维数的坡耕地优先流定量分析[J].农业机械学报,2017,48(12):214-220,277.
    [24] 敖礼林.花生地深翻改土的作用与操作要点[J].科学种养,2017(11):32-32.
    [25] Zhang Z B.Characterizing preferential flow in cracked paddy soils using computed tomography and breakthrough curve[J].Soil & Tillage Research,2015,146:53-65.
    [26] 吕刚,傅昕阳,李叶鑫,等.海州露天煤矿排土场复垦区不同土地利用类型土壤入渗特征[J].水土保持学报,2017,31(3):123-128.
    [27] 戴翠婷,刘窑军,王天巍,等.三峡库区高砾石含量紫色土优先流形态特征[J].水土保持学报,2017,31(1):103-108.
    [28] 潘网生,许玉凤,卢玉东,等.基于非均匀性和分形维数的黄土优先流特征定量分析[J].农业工程学报,2017,33(3):140-147.
    [29] 沃飞,陈效民,方堃,等.太湖地区水稻土大孔隙的CT扫描分析与灰色关联评价[J].土壤,2008,40(2):319-326.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700