用户名: 密码: 验证码:
温度对煤矸石动态淋溶特性的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Influence of temperature on dynamic leaching characteristics of coal gangue
  • 作者:冉洲 ; 刘文礼 ; 潘永泰 ; 刘文昌 ; 高自然 ; 赵英霄
  • 英文作者:RAN Zhou;LIU Wenli;PAN Yongtai;LIU Wenchang;GAO Ziran;ZHAO Yingxiao;School of Chemical and Environmental Engineering,China University of Mining and Technology(Beijing);Yangquan Coal(Group) Co.,Ltd.;
  • 关键词:煤矸石 ; 温度 ; 动态淋溶 ; 酸性污染物 ; 黄铁矿
  • 英文关键词:coal gangue;;temperature;;dynamic leaching;;acidic pollutant;;pyrite
  • 中文刊名:煤炭学报
  • 英文刊名:Journal of China Coal Society
  • 机构:中国矿业大学(北京)化学与环境工程学院;阳泉煤业(集团)有限责任公司;
  • 出版日期:2019-04-15
  • 出版单位:煤炭学报
  • 年:2019
  • 期:04
  • 基金:中央高校基本科研业务费专项资助项目(2010YH11)
  • 语种:中文;
  • 页:271-278
  • 页数:8
  • CN:11-2190/TD
  • ISSN:0253-9993
  • 分类号:TD849.5
摘要
煤矸石长期堆存将对周边环境造成酸性污染和重金属含量超标。为研究煤矸石山发生氧化自热对酸性污染物降雨淋溶释放特性的影响机理,以山西省阳煤集团煤矸石为研究对象,建立了自动温控喷淋系统,通过对不同温度煤矸石进行动态淋溶实验,研究了淋溶液中pH值、电导率(EC)值、氧化还原电位(ORP)和硫酸盐(SO_4~(2-))含量的淋溶规律,并对淋溶前后煤矸石矿物组成进行半定量分析。结果表明:风化煤矸石中含有大量硫酸盐等可溶性组分,且酸性组分含量大于碱性组分和黏土矿物组分中和量总和,初期润湿液SO_4~(2-)含量超过地下Ⅲ类水指标,可看作高度矿化水,呈弱酸性和氧化状态,但氧化性未超过一般界定氧化性土壤的值(400 mV);随着累计淋溶时间延长,淋溶液pH值先增大后减小并最终趋于稳定,在t=3 h达到最大值为7. 34~8. 03,SO_4~(2-)含量和EC值先急剧减小后趋于稳定,稳态值分别约为2 500 mg/L和2 mS/cm,ORP在325. 9~435. 2 mV波动;随着温度升高(50~200℃),淋溶液稳态pH值(pH_s)和煤矸石剩余黄铁矿含量先减小后增大,150~200的pH_s值小于5.79,SO_4~(2-)含量和石膏相对质量分数先增大后减小,ORP波动性增强,相对标准偏差RSD由9. 54%增大到10.06%,EC值受温度影响不显著;淋溶液各项指标均在150℃条件下取得极值,pH_(s,min)为4. 98,呈较强酸性;ORP_(max)为435. 2 mV,呈强氧化态。由此可得:煤矸石中产酸物质氧化作用可分为风化氧化和自热氧化,主要受环境温度、含水量和与空气接触程度的综合影响;煤矸石自热氧化造成的酸性污染演变过程是由碱性组分、含氮物质和氧化产生的酸性组分共同决定的,且3种组分淋溶释放速率经长期堆存后逐渐趋于稳定。本研究解释了煤矸石中黄铁矿氧化产酸受环境温度的影响机制,为自热煤矸石山降雨淋溶造成酸性污染动力学演变预测提供依据。
        Long-term stockpiling of coal gangue would cause acidic pollution at surrounding area and heavy metal content to exceed the standard. The coal gangue was obtained from Yangquan coalmine in Shanxi to study the mechanism of the influence that coal gangue's self-heating oxidation has on the leaching and release characteristics of acidic pollutants. The dynamic leaching experiments were carried out in an automatic temperature-controlled leaching system.The leaching rules of leaching solutions' pH values, electrical conductivities( ECs), oxidation-reduction potentials(ORPs) and sulfate contents(SO_4~(2-)) were investigated at different temperatures. Also,the respective mineral components of coal gangue samples before and after the leaching operations were analyzed semi-quantitatively. The result shows that weathered coal gangue contains a great quantity of soluble sulfates, and the content of acidic components is greater than the sum of alkaline and argillaceous mineral components. The sulfate content of wetting solution exceeds the subsurface class Ⅲ water index at the beginning of the experiment, so it can be regarded as highly mineralized water. Besides,the wetting solution assumes weak acidity and oxidation state,but the oxidizing property does not exceed the value of the general defined oxidizing soil( 400 mV). As time goes on, however, the pH value will increase at first,then decrease and tend to be stable eventually. At t = 3 h,the pH value reaches a maximum of about 7.34-8.03. The sulfate content and EC value will decrease sharply at first and then stabilize at around 2 500 mg/L and 2 mS/cm respectively, while the ORP will be fluctuating within the range of 325. 9 mV and 435. 2 mV. When temperature rises from 50 to 200℃,the steady state pH value( pH_s) of solution and the residual pyrite content in coal gangue will decrease at first and then increase,and pH_s values are maintained less than 5.79 at 150 ℃ to 200 ℃. The sulfate and gypsum contents will increase at first and then decrease while the volatility of ORP will increase gradually as temperature increases,and the relative standard deviation( RSD) increases from 9. 54% to 10. 06%. The EC value is not significantly affected by temperature. All these indexes will obtain their extreme values at 150 ℃,the extreme values of pH_s,min and ORP_(max) are 4.98 and 435.2 mV,respectively,which present a strong acidity and strong oxidation state.Therefore, the oxidation of acid-generating substances in coal gangue can be divided into weathering oxidation and autothermal oxidation, which are mainly affected by the combination of ambient temperature, water content and degree of air contact. The acid pollution evolution process caused by the autothermal oxidation of coal gangue is determined by alkaline components, nitrous substances and acidic components produced by oxidation, also, the leaching release rate of three components gradually tend to be stable after long-term storage. This paper explains the mechanism of temperature ' s influence on the acid production of pyrite oxidation in coal gangue, which could provide a research basis for forecasting the dynamic evolution of self-heated coal gangue hills ' acidic pollution caused by rainfall leaching and infiltrating.
引文
[1]国家能源局,环境保护部,工业和信息化部.关于促进煤炭安全绿色开发和清洁高效利用的意见:国能煤炭[2014] 571号[EB/OL]. http://zfxxgk. nea. gov. cn/auto85/201501/t20150112_1880. html(2015-01-01)[2018-4-20].
    [2]郭彦霞,张圆圆,程芳琴.煤矸石综合利用的产业化及其展望[J].化工学报,2014,65(7):2443-2453.GUO Yanxia,ZHANG Yuanyuan,CHENG Fangqin. Industrial development and prospect about comprehensive utilization of coal gangue[J]. CIESC Journal,2014,65(7):2443-2453.
    [3]黄文章.煤矸石山自然发火机理及防治技术研究[D].重庆:重庆大学,2004:12-15.HUANG Wenzhang. Study on spontaneous combustion mechanism and prevention technology of coal gangue[D]. Chongqing:Chongqing University,2004:12-15.
    [4]胡振琪,张明亮,马保国,等.粉煤灰防治煤矸石酸性与重金属复合污染[J].煤炭学报,2009,34(1):79-83.HU Zhenqi,ZHANG Mingliang,MA Baoguo,et al. Fly ash for control pollution of acid and heavy metals from coal refuse[J]. Journal of China Coal Society,2009,34(1):79-83.
    [5] LIANG Yanci,LIANG Handong,ZHU Shuquan. Mercury emission from spontaneously ignited coal gangue hill in Wuda coalfield, Inner Mongolia,China[J]. Fuel,2016,182:525-530.
    [6] AKCIL A,KOLDAS S. Acid Mine Drainage(AMD):Causes, treatment and case studies[J]. Journal of Cleaner Production, 2006,14(12):1139-1145.
    [7]赵峰华,孙红福,刘乃利,等.含煤岩系岩石静态产酸潜力综合评价[J].地球科学-中国地质大学学报,2014,39(3):350-356.ZHAO Fenghua,SUN Hongfu,LIU Naili,et al. Evaluation of static acid production potential for coal bearing formation[J]. Earth Science—Journal of China University of Geosciences, 2014,39(3):350-356.
    [8]姜利国,梁冰,尹成薇.淋溶作用下煤矸石产酸/产碱动力学的实验研究[J].实验力学,2013,28(4):502-510.JIANG Liguo, LIANG Bing, YIN Chengwei. Experimental studyof coal gangue acid/alkali production kinetics in the leaching effect[J]. Journal of Experimental Mechanics,2013,28(4):502-510.
    [9]赵洪宇,李玉环,宋强,等.煤矸石动态循环淋溶液的特性[J].环境工程学报,2017,11(2):1171-1177.ZHAO Hongyu,LI Yuhuan,SONG Qiang,et al. Characteristics of dynamic cyclic percolation solution from coal gangue[J]. Chinese Journal of Environmental Engineering,2017,11(2):1171-1177.
    [10]周辰昕,李小倩,周建伟.广西合山煤矸石重金属的淋溶实验及环境效应[J].水文地质工程地质,2014,41(3):135-141.ZHOU Chenxin,LI Xiaoqian,ZHOU Jianwei. Leaching experiment and environmental effect of heavy metals of coal gangue in Heshan mining area,Guangxi province[J]. Hydrogeology&Engineering Geology,2014,41(3):135-141.
    [11] PENG Bingxian,LI Xinrui,ZHAO Weihua,et al. Study on the release characteristics of chlorine in coal gangue under leaching conditions of different pH values[J]. Fuel,2018,217:427-433.
    [12]张明亮,胡振琪.煤矸石山酸性矿山废水的控制研究综述[J].有色金属,2008,60(4):150-153.ZHANG Mingliang, HU Zhenqi. Research and discussion on acid mine drainage control of coal mine waste[J]. Nonferrous Metals,2008,60(4):150-153.
    [13] KOMNITSAS K,PASPALIARIS I,ZILBERCHMIDT M,et al. Environmental impacts at coal waste disposal sites-Efficiency of desulfurization technologies[J]. Global Nest Journal, 2001,3(2):109-116.
    [14]刘文昌,冉洲,潘永泰.基于煤矸石、赤泥酸碱释放机理的混合堆存技术探索[J].选煤技术,2016,2:57-61.LIU Wenchang,RAN Zhou,PAN Yongtai. A study of the technique for mixed stacking of coal mine waste and red mud based on acid and alkali releasing mechanisms[J]. Coal Preparation Technology,2016,2:57-61.
    [15] SOBEK A A,SHULLER W A,FREEMAN J R,et al. Field and laboratory methods applicable to overburdens and minesoils. EPA600/2-78-054,U. S. Environmental Protection Agency,Cincinnati[R].1978.
    [16]刘志斌,张跃进,王娟.煤矸石淋溶水环境影响的分析研究[J].辽宁工程技术大学学报,2005,24(2):280-283.LIU Zhibin,ZHANG Yuejin,WANG Juan. Research of influence of leaching water of gangue on environments[J]. Journal of Liaoning Technology University,2005,24(2):280-283.
    [17] MYLONA E,XENIDIS A,PASPALIARIS I. Inhibition of acid generation from sulphidic wastes by the addition of small amounts of limestone[J]. Minerals Engineering,2000,13(10):1161-1175.
    [18]刘钦甫,郑丽华,张金山,等.煤矸石中氮溶出的动态淋滤实验[J].煤炭学报,2010,35(6):1009-1014.LIU Qinfu,ZHENG Lihua,ZHANG Jinshan,et al. Continuous leaching experiments of nitrogen from coal gangue[J]. Journal of China Coal Society,2010,35(6):1009-1014.
    [19] BUCKLEY A N, WOODS R. The surface oxidation of pyrite[J].Applied Surface Science, 1987,27(4):437-452.
    [20]廖昕.黑色页岩化学风化特征及其黄铁矿氧化动力学研究[D].成都:西南交通大学,2013:13-15.LIAO Xin. Study on weathering characteristics of black shale andoxidation kinetics of pyrite embedded in rocks[D].Chengdu:Southwest Jiaotong University,2013:13-15.
    [21] AMICO D M E,DURBIANO F. Effect of CO_2 concentration in air on electrolytic conductivity of aqueous solutions of KCl.[J]. Annali Di Chimica,2004,94(5-6):463.
    [22] OLSON J R, HAWKINS C P. Effects of total dissolved solids on growth and mortality predict distributions of stream macroinvertebrates[J]. Freshwater Biology,2017,62(4):779-791.
    [23] SOUZA A D,PINA P S,LIMA E V 0,et al. Kinetics of sulphuric acid leaching of a zinc silicate calcine[J]. Hydrometallurgy,2007,89(3-4):337-345.
    [24]林海,于明利,董颖博,等.不同粒度锡采矿废石重金属淋溶规律及影响机制[J].中国环境科学,2014,34(3):664-671.LIN Hai,YU Mingli,DONG Yingbo,et al. The heavy mental leaching rules and influence mechanism of different particle size of tin mining waste rock[J]. China Environmental Science,2014,34(3):664-671.
    [25]陈照峰.无机非金属材料学[M].西安:西北工业大学出版社,2016.
    [26]丁昌璞.中国自然土壤、旱作土壤、水稻土的氧化还原状况和特点[J].土壤学报,2008,45(1):66-75.DING Changpu. Oxidation-reduction regimes and characteristics of natural soil, upland soil and paddy soil in China[J]. Acta Pedologica Sinica,2008,45(1):66-75.
    [27]赵云,王丽萍,何士龙,等.Fenton试剂氧化对硝基酚中氧化还原电位的变化规律[J].环境污染与防治,2011,33(4):58-61.ZHAO Yun, WANG Liping, HE Shilong, et al. Variation ofORP during p-nitrophenol degradation by Fenton oxidation process[J]. Environmental Pollution&Control,2011,33(4):58-61.
    [28] KARATHANASIS A D, THOMPSON Y L, EVANGELOU V P.Temporal solubility trends of aluminum and iron leached from coal spoils and contaminated soil materials[J]. Journal of Environmental Quality, 1990,19(3):389-395.
    [29] KARATHANASIS A D,EVANGELOU V P,THOMPSON Y L.Aluminum and iron equilibria in soil solutions and surface waters of acid mine watersheds[J]. Journal of Environmental Quality, 1988,17(4):534-543.
    [30]余运波,汤鸣皋,钟佐燊,等.煤矸石堆放对水环境的影响——以山东省一些煤矸石堆为例[J].地学前缘,2001,8(1):163-169.YU Yunbo,TANG Minggao,ZHONG Zuoshen,et al. The influence of coal-mining waste piles on hydro-environment in Shandong Province[J]. Earth Science Frontiers(China University of Geosciences, Beijing),2001,8(1):163-169.
    [31] BENZAAZOUA M,BUSSI RE B,DAGENAIS A M,et al. Kinetic tests comparison and interpretation for prediction of the Joutel tailings acid generation potential[J]. Environmental Geology, 2004,46(8):1086-1101.
    [32]赵峰华,孙红福,刘乃利.煤系岩石产酸潜力的索氏淋滤实验评价[J].中国矿业大学学报,2013,42(2):214-220.ZHAO Fenghua,SUN Hongfu,LIU Naili. Evalution of soxhlet leaching experiment of acid-producing potential of rock from coal-bearing measures[J]. Journal of China University of Mining&Technology,2013,42(2):214-220.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700