用户名: 密码: 验证码:
温度对复杂氧化铜矿中不同赋存状态铜矿物浸出行为的影响(英文)
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Effect of temperature on leaching behavior of copper minerals with different occurrence states in complex copper oxide ores
  • 作者:王改荣 ; 刘媛媛 ; 佟琳琳 ; 金哲男 ; 陈国宝 ; 杨洪英
  • 英文作者:Gai-rong WANG;Yuan-yuan LIU;Lin-lin TONG;Zhe-nan JIN;Guo-bao CHEN;Hong-ying YANG;Key Laboratory for Ecological Metallurgy of Multimetallic Mineral (Ministry of Education), Northeastern University;School of Metallurgy, Northeastern University;CNMC Luanshya Copper Mines Plc (CLM);
  • 关键词:复杂氧化铜矿 ; 赋存状态 ; 温度 ; 浸出行为 ; 铜矿
  • 英文关键词:complex copper oxide ores;;occurrence state;;temperature;;leaching behavior;;copper minerals
  • 中文刊名:Transactions of Nonferrous Metals Society of China
  • 英文刊名:中国有色金属学报(英文版)
  • 机构:东北大学多金属共生矿生态化冶金教育部重点实验室;东北大学冶金学院;CNMC Luanshya Copper Mines Plc (CLM);
  • 出版日期:2019-10-15
  • 出版单位:Transactions of Nonferrous Metals Society of China
  • 年:2019
  • 期:10
  • 基金:Project(U1608254) supported by the Special Fund for the National Natural Science Foundation of China;; Projects(ZJKY2017(B)KFJJ01,ZJKY2017(B)KFJJ02) supported by Zijin Mining Group Co.,Ltd.,China
  • 语种:英文;
  • 页:205-214
  • 页数:10
  • CN:43-1239/TG
  • ISSN:1003-6326
  • 分类号:TF811
摘要
采用XRD、光学显微镜、SEM-EDS等物相分析手段,研究温度对复杂氧化铜矿中不同赋存状态铜矿物浸出行为的影响。结果表明:常温下易浸氧化铜矿物完全被浸出,而结合态铜矿物丝毫未被浸出;微温(40°C)下主要是类质同象铜的浸出;中温(60°C)时吸附态铜的浸出速率明显加快;达80°C时,类质同象铜完全浸出,但仍有11.2%的吸附态铜未被浸出。在整个浸出过程中,长石-石英-铜-铁胶体中的铜未被溶解。不同铜矿物的浸出速率大小如下:孔雀石、假孔雀石>硅孔雀石>含铜绿泥石>含铜白云母>含铜黑云母>含铜褐铁矿>长石-石英-铜-铁胶结体。
        The effect of temperature on leaching behavior of copper minerals with different occurrence states in complex copper oxide ores was carried out by phase analysis means of XRD, optical microscopy and SEM-EDS. The results indicated that at ambient temperature, the easily leached copper oxide minerals were completely dissolved, while the bonded copper minerals were insoluble. At lukewarm temperature of 40 °C, it was mainly the dissolution of copper in isomorphism state. With increasing temperature to 60 °C, the copper leaching rate in the adsorbed state was significantly accelerated. In addition, when the temperature increased to 80 °C, the isomorphic copper was completely leached, leaving 11.2% adsorbed copper un-leached. However, the copper in feldspar-quartz-copper-iron colloid state was not dissolved throughout the leaching process. Overall, the leaching rates of copper in different copper minerals decreased in the order: malachite, pseudo-malachite > chrysocolla > copper-bearing chlorite > copper-bearing muscovite > copper-bearing biotite > copper-bearing limonite > feldspar-quartz-copper-iron colloid.
引文
[1]YIN Sheng-hua,WANG Lei-ming,WU Ai-xiang,FREE M L,KABWE E.Enhancement of copper recovery by acid leaching of high-mud copper oxides:A case study at Yangla Copper Mine,China[J].Journal of Cleaner Production,2018,202:321-331.
    [2]LIU Mei-lin,WEN Jian-kang,TAN Gui-kuan,LIU Guo-liang,WUBiao.Experimental studies and pilot plant tests for acid leaching of low-grade copper oxide ores at the Tuwu Copper Mine[J].Hydrometallurgy,2016,165:227-232.
    [3]DENG Jiu-shuai,WEN Shu-ming,DENG Jian-ying,WU Dan-dan.Extracting copper from copper oxide ore by a zwitterionic reagent and dissolution kinetics[J].International Journal of Minerals,Metallurgy,and Materials,2015,22(3):241-248.
    [4]LIU Wei,TANG Mo-tang,TANG Chao-bo,HE Jing,YANGSheng-hai,YANG Jian-guang.Dissolution kinetics of low grade complex copper ore in ammonia-ammonium chloride solution[J].Transactions of Nonferrous Metals Society of China,2010,20(5):910-917.
    [5]HAN Jun-wei,LIU Wei,XUE Kai,QIN Wen-qing,JIAO Fen,ZHULin.Influence of NH4HF2 activation on leaching of low-grade complex copper ore in NH3-NH4Cl solution[J].Separation and Purification Technology,2017,181:29-36.
    [6]ZHAO Zhong-wei,ZHANG You-xin,CHEN Xing-yu,CHENAi-liang,HUO Guang-sheng.Effect of mechanical activation on the leaching kinetics of pyrrhotite[J].Hydrometallurgy,2009,99(1):105-108.
    [7]ZHANG Feng-hua,SONG Bao-xu.Efficient recovery of a complex refractory copper oxide ore[J].Mining and Metallurgical Engineering,2014,34(6):26-28.
    [8]WEN Sheng-lai.Overview on flotation method of low-grade oxidized copper ore and its bioleaching technology[J].Modern Mining,2010,26(2):57-59.
    [9]SMITH J M.Chemical engineering kinetics[M].New York:Mc Graw-Hill,1956.
    [10]SILVAS F P C,CORREA M M J,CALDAS M P K,MORAES V TD,ESPINOSA D C R,TENORIA J A S.Printed circuit board recycling:Physical processing and copper extraction by selective leaching[J].Waste Management,2015,46:503-510.
    [11]SUN Z H I,XIAO Y,SIETSMA J,AGTERHUIS H,VISSER G,YANG Y.Selective copper recovery from complex mixtures of end-of-life electronic products with ammonia-based solution[J].Hydrometallurgy,2015,152:91-99.
    [12]LEE I H,WANG Y J,CHERN J M.Extraction kinetics of heavy metal-containing sludge[J].Journal of Hazardous Materials,2005,123(1):112-119.
    [13]VEEKEN A H M,HAMELERS H V M.Removal of heavy metals from sewage sludge by extraction with organic acids[J].Water Science&Technology,1998,40(1):129-136.
    [14]LILIAN V Y,VíCTOR Q R.Influence of seawater and discard brine on the dissolution of copper ore and copper concentrate[J].Hydrometallurgy,2018,180:88-95.
    [15]WANG Gai-rong,YANG Hong-ying,TONG Lin-lin,LIUYuan-yuan.Research on process mineralogy of oxidized copper ore in Luanshya,Zambia[J].Journal of Northeastern University(Natural Science),2019,40(3):350-355.(in Chinese)
    [16]FENG Qi-cheng,WEN Shu-ming,CHEN Ci-yun,ZHAO He-fei,WANG Yi-jie,LV Chao.Extraction of copper from a refractory copper oxide ore by catalytic oxidation acid leaching[J].Advanced Materials Research,2013,734-737:941-944.
    [17]SHAYESTEHFAR M,NASAB S K,MOHAMMADALIZADEH H.Mineralogy,petrology,and chemistry studies to evaluate oxide copper ores for heap leaching in Sarcheshmeh copper mine,Kerman,Iran[J].Journal of Hazardous Materials,2008,154:602-612.
    [18]WU Ai-xiang,YIN Sheng-hua,YANG Bao-hua,WANG Jun,QIUGuan-zhou.Study on preferential flow in dump leaching of low-grade ores[J].Hydrometallurgy,2007,87:124-132.
    [19]CHEN Xiang-yang,LAN Xin-zhe,ZHANG Qiu-li,MA Hong-zhou,ZHOU Jun.Leaching vanadium by high concentration sulfuric acid from stone coal[J].Transactions of Nonferrous Metals Society of China,2010,20(S1):s123-s126.
    [20]BIINGOL D,CANBAZOGLU M.Dissolution kinetics of malachite in sulphuric acid[J].Hydrometallurgy,2004,72(1):159-165.
    [21]LI Yu-biao,WANG Bing,XIAO Qing,CLEMENT L,ZHANGQi-wu.The mechanisms of improved chalcopyrite leaching due to mechanical activation[J].Hydrometallurgy,2017,173:149-155.
    [22]TANDA B C,EKSTEEN J J,ORABY E A.An investigation into the leaching behaviour of copper oxide minerals in aqueous alkaline glycine solutions[J].Hydrometallurgy,2017,167:153-162.
    [23]RUBISOV D H,KROWINKEL J M,PAPANGELAKIS V G.Sulphuric acid pressure leaching of laterites-universal kinetics of nickel dissolution for limonites and limonitic/saprolitic blends[J].Hydrometallurgy,2000,58(1):1-11.
    [24]?ZDEMIR M,?ETISLI H.Extraction kinetics of alunite in sulfuric acid and hydrochloric acid[J].Hydrometallurgy,2005,76(3-4):217-224.
    [25]?ZDEMIR M,?AK?R D,K?P?AK?.Magnesium recovery from magnesite tailings by acid leaching and production of magnesium chloride hexahydrate from leaching solution by evaporation[J].International Journal of Mineral Processing,2009,93(2):209-212.
    [26]LUO Zheng,YANG Jing,MA Hong-wen,LIU Mei-tang,MA Xi.Recovery of magnesium and potassium from biotite by sulfuric acid leaching and alkali precipitation with ammonia[J].Hydrometallurgy,2015,157:188-93.
    [27]CHEN Fan-rong,EWING R C.U6+structural entropy of compounds and its influence on thermodynamic stability:Application in geological disposal of nuclear waste[J].Scientia Sinica(Terrae),2002,32(8):644-652.
    [28]COOPER R M,PARKINSON G M,NEWMAN O M G.The precipitation of silica from acidic zinc leach liquors[C]//GUPTA BS,IBRAHIM S.Mixing and Crystallization.Dordrecht,Netherlands:Springer,2000:163-176.
    [29]SUN M S.The nature of chrysocolla from inspiration mine Arizona[J].American Mineralogist,1963,48:649-658.
    [30]NICOL M J,AKILAN C.The kinetics of the dissolution of chrysocolla in acid solutions[J].Hydrometallurgy,2018,178:7-11.
    [31]SUN Xi-liang,CHEN Bai-zhen,YANG Xi-yun,LIU You-yuan.Technological conditions and kinetics of leaching copper from complex copper oxide ore[J].Journal of Central South University,2009,16(6):936-941.
    [32]WU Ying.Optics and micro-shape characters in the process of biotite transforming to chlorite[J].Inner Mongolia Petrochemical Industry,2009(10):5-7.
    [33]VEEIER D R,FENNY J M.TEM study of the biotite    [34]SN?LL S,LILJEFORS T.Leachability of major elements from minerals in strong acids[J].Journal of Geochemical Exploration,2000,71(1):1-12.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700