用户名: 密码: 验证码:
多种材料对铅镉污染农田土壤原位修复效果的研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Comparison of several amendments for in-situ remediation of lead-and cadmium-contaminated farmland soil
  • 作者:王建乐 ; 谢仕斌 ; 涂国权 ; 方战强
  • 英文作者:WANG Jian-le;XIE Shi-bin;TU Guo-quan;FANG Zhan-qiang;School of Chemistry and Environment, South China Normal University;Technical Innovation Alliance of Guangdong Environmental Restoration Industry;
  • 关键词: ; ; 农田土壤 ; 修复效果 ; 黏土矿物 ; 生物炭
  • 英文关键词:lead;;cadmium;;farm soil;;remediation effectiveness;;clay minerals;;biochar
  • 中文刊名:农业环境科学学报
  • 英文刊名:Journal of Agro-Environment Science
  • 机构:华南师范大学化学与环境学院;广东省环境修复产业技术创新联盟;
  • 出版日期:2019-02-20
  • 出版单位:农业环境科学学报
  • 年:2019
  • 期:02
  • 基金:国家重点研发计划项目(2017YFD0801300);; 国家自然科学基金项目(41471259);; 广东省科技厅协同创新与平台建设专项(2017B090907032)~~
  • 语种:中文;
  • 页:83-90
  • 页数:8
  • CN:12-1347/S
  • ISSN:1672-2043
  • 分类号:X53
摘要
为选取费效比高的铅镉污染农田土壤修复材料,研究比较了黏土矿物和生物炭不同组合:硅藻土(Diatomite,D)、膨润土(Bentonite,BE)、海泡石(Sepiolite,S)、人造沸石(Artificial zeolite,AZ)、羟基磷灰石(Hydroxyapatite,HA)、生物炭(Biochar,B)、硅藻土+生物炭(Diatomite/Biochar,DB)、膨润土+生物炭(Bentonite/Biochar,BEB)、海泡石+生物炭(Sepiolite/Biochar,SB)、人造沸石+生物炭(Artificial zeolite/Biochar,AZB)以及羟基磷灰石+生物炭(Hydroxyapatite/Biochar,HAB)等修复材料对农田土壤中铅镉的原位修复效果并对修复前后铅镉形态分布和土壤理化性质变化进行了跟踪。结果表明,修复21 d后,上述各修复材料对铅修复率大小顺序依次为:HA>D>AZ>BE>S>DB>BEB>AZB>SB>HAB>B,对镉修复率大小顺序依次为:SB>AZB>B>HAB>BEB>D>S>BE>AZ>HA>DB;各修复材料均能提高铅、镉残渣态(RS)的比例。以HA为代表的黏土矿物在原位修复铅污染农田土壤有明显优势,含生物炭的修复材料在原位修复镉污染农田土壤中有明显优势,SB和AZB适合用于铅镉复合污染农田土壤,处理后农田土壤理化性质未发生较大变化。
        Cost-efficiency of in-situ remediation of lead(Pb)-and cadmium(Cd)-contaminated farm soil using amended materials was assessed. The effects of ordinary diatomite(D), bentonite(BE), sepiolite(S), artificial zeolite(AZ), and hydroxyapatite(HA)were comparedagainst those of biochar(B), diatomite/biochar(DB), bentonite/biochar(BEB), sepiolite/biochar(SB), artificial zeolite/biochar(AZB), andhydroxyapatite/biochar(HAB)on the immobilization of Pb-and Cd-contaminated farmland soil. After 21 d of remediation by these meth?ods, experiments with diethylenetriaminepentaacetic acid(DTPA)showed that Pb and Cd bioaccessibilities decreased by 25.7%~83.4% and8.4%~34.2% respectively. The order of Pb immobilization was found to be HA>D>AZ>BE>S>DB>BEB>AZB>SB>HAB>B, andthe order of Cd immobilization was found to be SB>AZB>B>HAB>BEB>D>S>BE>AZ>HA>DB. Moreover, the sequential extrac?tion procedure indicated that all of the above materials could increase the proportion of Pb and Cd residual states. HA, which is a clay miner?al, had a distinct advantage in in-situ remediation of Pb-contaminated farmland soil, whereas the same was true for clay minerals and bio?char with regard to the in-situ remediation of Cd-contaminated farmland soil. SB and AZB showed distinct advantages in the in-situ remedi?ation of Pb-and Cd-contaminated farmland soil. After treatment, the farm soils' physical and chemical properties did not change significantly.
引文
[1]Violante A,Huang P M,Gadd G M.Biophysico-chemical processes of heavy metals and metalloids in soil environments[M].Hoboken,NJ:John Wiley&Sons Inc,2008:15-22.
    [2]Tahervand S,Jalali M.Sorption and desorption of potentially toxic metals(Cd,Cu,Ni and Zn)by soil amended with bentonite,calcite and zeolite as a function of pH[J].Journal of Geochemical Exploration,2017,181:148-159.
    [3]Glatstein D A,Francisca F M.Influence of pH and ionic strength on Cd,Cu and Pb removal from water by adsorption in Na-bentonite[J].Applied Clay Science,2015,118:61-67.
    [4]Sun Y B,Li Y,Xu Y M,et.In situ stabilization remediation of cadmium(Cd)and lead(Pb)co-contaminated paddy soil using bentonite[J].Applied Clay Science,2015,105:200-206.
    [5]Merrikhpour H,Jalali M.Comparative and competitive adsorption of cadmium,copper,nickel,and lead ions by Iranian natural zeolite[J].Clean Technol Environ Policy,2013,15(2):303-316.
    [6]Edwards R,Rebedea I,Lepp N W.An investigation into the mechanism by which synthetic zeolites reduce labile metal concentrations in soils[J].Environmental Geochemistry and Health,1999,21(2):157-173.
    [7]Liang X F,Xu Y,Xu Y M,et al.Two-year stability of immobilization effect of sepiolite on Cd contaminants in paddy soil[J].Environmental Science and Pollution Research,2016,23(13):12922-12931.
    [8]Ye X X,Kang S H,Wang H M,et al.Modified natural diatomite and its enhanced immobilization of lead,copper and cadmium in simulated contaminated soils[J].Journal of Hazardous Materials,2015,289:210-218.
    [9]Sun Y B,Li Y,Xu Y M,et al.Reliability and stability of immobilization remediation of Cd polluted soils using sepiolite under pot and field trials[J].Environmental Pollution,2016,208(Pt B):739-746.
    [10]Reddy H K,Lee S M.Magnetic biochar composite:Facile synthesis,characterization,and application for heavy metal removal[J].Colloids and Surfaces A-physicoshemical and Engineering Aspects,2014,454:96-103.
    [11]Beeley L,Moreno J E,Gomez E J L,et al.A review of biochars′potential role in the remediation,revegetation and restoration of contaminated soils[J].Environmental Pollution,2011,159(12):3269-3282.
    [12]Tessier A,Campbell P G,Bisson M.Sequential extraction procedure for the speciation of particulate trace metals[J].Analytical Chemistry,1979,51(7):844-851.
    [13]Dai J,Becquer T,Rouiller J H,et al.Influence of heavy metals on Cand N mineralization and microbial biomass in Zn,Pb,Cu,and Cd contaminated soils[J].Applied Soil Ecology,2004,25(2):99-109.
    [14]Lindsay W L,Norvell W A.Equilibrium relationships of Zn2+,Fe2+,Ca2+and H+with EDTA and DTPA in soils[J].Proceedings of the Soil Science Society of America,1969,33(1):62-68.
    [15]Chen J H,Wang Y J,Zhou D M,et al.Adsorption and desorption of Cu(II),Zn(II),Pb(II),and Cd(II)on the soils amended with nanoscale hydroxyapatite[J].Environmental Progress&Sustainable Energy,2010,29(2):233-241.
    [16]Xu C,Chen H X,Xiang Q,et al.Effect of peanut shell and wheat straw biochar on the availability of Cd and Pb in a soil-rice(Oryza sativa,L.)system[J].Environmental Science&Pollution Research,2017,25(5):1-10.
    [17]Yin X,Xu Y,Huang R,et al.Remediation mechanisms for Cd-contaminated soil using natural sepiolite at the field scale[J].Environmental Science Processes&Impacts,2017,19(12):1563-1570.
    [18]Liang X,Han J,Xu Y,et al.In situ field-scale remediation of Cd polluted paddy soil using sepiolite and palygorskite[J].Geoderma,2014,235(4):9-18.
    [19]Filip M G T,Marc G V.Single extractions versus sequential extraction for the estimation of heavy metal fractions in reduced and oxidized dredged sediments[J].Chemical Speciation&Bioavailability,1999,11(2):43-50.
    [20]罗泽娇,刘沛,贾娜.土壤中重金属铅浸出毒性的方法研究[J].环境科学与技术,2014,37(11):86-89.LUO Ze-jiao,LIU Pei,JIA Na.Study on leaching toxicity of heavy metal lead in soil[J].Environmental Science&Technology,2014,37(11):86-89.
    [21]钟晓兰,周生路,黄明丽,等.土壤重金属的形态分布特征及其影响因素[J].生态环境学报,2009,18(4):1266-1273.ZHONG Xiao-lan,ZHOU Sheng-lu,HUANG Ming-li,et al.Speciation and distribution of heavy metals in soil and its influencing factors[J].Ecology and Environmental Science,2009,18(4):1266-1273.
    [22]Mench M J,Fargues S.Metal uptake by iron-efficient and inefficient oats[J].Plant&Soil,1994,165(2):227-233.
    [23]朱健,王平,林艳,等.不同产地硅藻土原位控制土壤镉污染差异效应与机制[J].环境科学,2016,37(2):717-725.ZHU Jian,WANG Ping,LIN Yan,et al.Different effects of diatomite in situ on controlling cadmium pollution in soil and its mechanism[J].Environmental Science,2016,37(2):717-725.
    [24]武玉,徐刚,吕迎春,等.生物炭对土壤理化性质影响的研究进展[J].地球科学进展,2014,29(1):68-79.WU Yu,XU Gang,LüYing-chun,et al.Research progress on effects of biochar on soil physical and chemical properties[J].Advances in Earth Science,2014,29(1):68-79.
    [25]韩君,梁学峰,徐应明,等.黏土矿物原位修复镉污染稻田及其对土壤氮磷和酶活性的影响[J].环境科学学报,2014,34(11):2853-2860.HAN Jun,LIANG Xue-feng,XU Ying-ming,et al.In situ remediation of cadmium contaminated paddy soils with clay minerals and their effects on soil nitrogen,phosphorus and enzyme activities[J].Acta Scientiae Circumstantiae,2014,34(11):2853-2860.
    [26]Parvage M M,Ulen B,Eriksson J,et al.Phosphorus availability in soils amended with wheat residue char[J].Biology and Fertility of Soils,2013,49(2):245-250.
    [27]Montalvo D,Mclaughlin M J,Degryse F.Efficacy of hydroxyapatite nanoparticles as phosphorus fertilizer in Andisols and Oxisols[J].Soil Science Society of America Journal,2015,79(2):551-558.
    [28]Liu R Q,Rattan L.Potentials of engineered nanoparticles as fertilizers for increasing agronomic productions[J].Science of the Total Environment,2015,514:131-139.
    [29]Spokas K A,Novak J M,Venterea R T,et al.Biochar’s role as an alternative N-fertilizer:Ammonia capture[J].Plant and Soil,2012,350(1/2):35-42.
    [30]李吉进,徐秋明,倪小会,等.施用膨润土对土壤含水量和有机质含量的影响[J].华北农学报,2002(2):88-91.LI Ji-jin,XU Qiu-ming,NI Xiao-hui,et al.Effect of bentonite on soil water content and organic matter content[J].Acta Agriculturae Boreali-Sinica,2002(2):88-91.
    [31]李金文,顾凯,唐朝生,等.生物炭对土体物理化学性质影响的研究进展[J].浙江大学学报(工学版),2018,52(1):192-206.LI Jin-wen,GU Kai,TANG Chao-sheng,et al.Research progress in the influence of biochar on physical and chemical properties of soil[J].Journal of Zhejiang University(Engineering Science),2018,52(1):192-206.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700