用户名: 密码: 验证码:
鄂尔多斯盆地延长组长7段沉积岩元素地球化学特征及沉积环境分析
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Geochemical Characteristics and Depositional Environment Implications of Sedimentary Rocks in the Chang 7 Member of Yanchang Formation in the Ordos Basin
  • 作者:马奂奂 ; 刘池洋 ; 张龙 ; 张东东 ; 王文青 ; 赵岩 ; 高明 ; 全晓园
  • 英文作者:MA Huanhuan;LIU Chiyang;ZHANG Long;ZHANG Dongdong;WANG Wenqing;ZHAO Yan;GAO Ming;QUAN Xiaoyuan;State Key Laboratory of Continental Dynamics,Northwest University;School of Earth Sciences and Engineering,Xi'an Shiyou University;Shaanxi Xintai Energy Co.,Ltd.;
  • 关键词:鄂尔多斯盆地 ; 三叠纪 ; 延长组 ; 元素地球化学特征 ; 沉积环境
  • 英文关键词:Ordos Basin;;Triassic;;Yanchang Formation;;geochemical characteristic;;depositional environment
  • 中文刊名:现代地质
  • 英文刊名:Geoscience
  • 机构:西北大学大陆动力学国家重点实验室;西安石油大学地球科学与工程学院;陕西新泰能源有限公司;
  • 出版日期:2019-07-19
  • 出版单位:现代地质
  • 年:2019
  • 期:04
  • 基金:国家自然科学基金重点项目(41330315,41402093)
  • 语种:中文;
  • 页:185-195
  • 页数:11
  • CN:11-2035/P
  • ISSN:1000-8527
  • 分类号:P618.13
摘要
沉积岩的地球化学特征可以反映盆地沉积环境。为了探讨鄂尔多斯盆地延长组沉积时期古气候、氧化还原条件、古盐度等特征,对鄂尔多斯盆地东南部铜川延长组长7段的5个砂岩、8个页岩样品进行主量、微量以及稀土元素地球化学分析。结果显示,长7段细粒沉积物Al_2O_3/SiO_2值与K_2O/Na_2O值指示样品成分成熟度差别不大,黏土矿物含量较高。∑REE平均值为132. 65×10~(-6),明显低于北美页岩平均稀土元素含量,也低于全球平均大陆上地壳值; LREE分异程度较高,呈微弱的Eu正异常,无Ce异常。"C值"、Sr/Cu、Rb/Sr、Mg/Ca等指标显示延长组沉积期整体处于温暖潮湿的气候区。研究区样品富集微量元素U、Sc、Cs(平均20. 11×10~(-6)、9. 66×10~(-6)、6. 08×10~(-6)),结合V、δU、Th/U、V/Cr、V/Sc、V/(V+Ni)等指标分析,结果指示延长组沉积期以底层水体呈强分层的还原环境为主。Li、Sr、Ni、Sr/Ba、(MgO/Al_2O_3)×100等值显示沉积期水体总体为淡水-微咸水。
        Geochemical characteristics of sediments can reflect the depositional environment. In order to study its paleoclimate,redox conditions,and paleosalinity in the deposition period of the Yanchang Formation,geochemical( major,trace and rare earth elements( REEs)) characteristics of 15 sandstone and shale samples from the Chang 7 Member of the Yanchang Formation in the southeastern Ordos Basin were studied. The Al_2O_3/SiO_2 and K_2 O/Na_2 O values of fine-grained sedimentary rocks in the Chang 7 Member indicate similar compositional maturity and high clay contents. The average ∑REE value( 132. 65 × 10~(-6)) is significantly lower than that of the NASC and the UCC. The rocks also display relatively high LREE contents,weakly positive Eu and no Ce anomalies. The "C value",Sr/Cu,Rb/Sr,Mg/Ca indices suggest that the entire deposition period of the Yanchang Formation was in a warm humid climate. Samples in the study area are rich in certain trace elements,such as U,Sc and Cs( average 20. 11 × 10~(-6),9. 66 × 10~(-6) and 6. 08 × 10~(-6),respectively). This result and the values of V,δU,Th/U,V/Cr,V/Sc and V/( V + Ni) altogether indicate that the deposition period of the Yanchang Formation was dominated by a reducing,strongly stratified subsurface water layer. The values of Li,Sr,Ni,Ga,Sr/Ba,CaO/( CaO + Fe) and( MgO/Al_2O_3) × 100 indicate that the water body of the deposition comprised mainly freshwater-brackish water.
引文
[1] TAYLOR S R,MCLENNAN S M. The Continental Crust:Its Composition and Evolution:An Examination of the Geochemical Record Preserved in Sedimentary Rocks[M]. Oxford:Blackwell Scientific Publications,1985:321.
    [2] MCLENNAN S M. Relationships between the trace element composition of sedimentary rocks and upper continental crust[J].Geochemistry,Geophysics,Geosystems,2013,2(4):1-24.
    [3] JOHNSSON M J,BASU A. Processes controlling the composition of clastic sediment[J]. Special Paper of the Geological Society of America,1993,284(3):1-19.
    [4] MORFORD J L,EMERSON S. The geochemistry of redox sensitive trace metals in sediments[J]. Geochimica et Cosmochimica Acta,1999,63(11/12):1735-1750.
    [5] TRIBOVILLARD N,ALGEO T J,LYONS T,et al. Trace metals as paleoredox and paleoproductivity proxies:an update[J].Chemical Geology,2006,232(1/2):12-32.
    [6] LI B Q,ZHUANG X G,LIU X F,et al. Mineralogical and geochemical composition of Middle Permian Lucaogou Formation in the southern Junggar Basin,China:implications for paleoenvironment,provenance,and tectonic setting[J]. Arabian Journal of Geosciences,2016,9(3):1-16.
    [7]刘春莲,秦红,车平,等.广东三水盆地始新统心组生油岩元素地球化学特征及沉积环境[J].古地理学报,2005,7(1):125-136.
    [8]闫小雄.鄂尔多斯中生代盆地古物源分析与沉积环境格局恢复[D].西安:西北大学,2001.
    [9]张文正,杨华,杨奕华,等.鄂尔多斯盆地长7优质烃源岩的岩石学、元素地球化学特征及发育环境[J].地球化学,2008,37(1):59-64.
    [10]邱欣卫.鄂尔多斯盆地延长期富烃凹陷特征及其形成的动力学环境[D].西安:西北大学,2011.
    [11]熊林芳.坳陷型富烃凹陷优质烃源岩的形成环境[D].西安:西北大学,2015.
    [12]任津杰.鄂尔多斯盆地晚三叠世延长期晚期双壳类化石层形成环境研究——延长期晚期烃源岩形成环境探讨[D].西安:西北大学,2016.
    [13]尹锦涛,俞雨溪,姜呈馥,等.鄂尔多斯盆地张家滩页岩元素地球化学特征及与有机质富集的关系[J].煤炭学报,2017,42(6):1544-1556.
    [14]雷开宇,刘池洋,张龙,等.鄂尔多斯盆地北部侏罗系泥岩地球化学特征:物源与古沉积环境恢复[J].沉积学报,2017,35(3):621-636.
    [15]王峰,刘玄春,邓秀芹,等.鄂尔多斯盆地纸坊组微量元素地球化学特征及沉积环境指示意义[J].沉积学报,2017,35(6):1265-1273.
    [16] ZHAO X C,LIU C Y,WANG J Q,et al. Petrology,geochemistry and zircon U-Pb geochronology of the Xiangshan Group in the eastern Hexi Corridor Belt:implications for provenance and tectonic evolution[J]. Acta Geologica Sinica,2017,91(5):1680-1703.
    [17] LI D L,LI R X,ZHU Z W,et al. Origin of organic matter and paleo-sedimentary environment reconstruction of the Triassic oil shale in Tongchuan City,southern Ordos Basin(China)[J].Fuel,2017,208:223-235.
    [18] ZHANG L,LIU C Y,FAYEK M,et al. Hydrothermal mineralization in the sandstone-hosted Hangjinqi uranium deposit,North Ordos Basin,China[J]. Ore Geology Reviews,2017,80:103-115.
    [19]范萌萌,卜军,曾家明,等.鄂尔多斯盆地东南部晚三叠世延长期沉积相及岩相古地理演化特征[J].石油地质与工程,2012,26(4):9-14.
    [20]喻建,杨亚娟,杜金良.鄂尔多斯盆地晚三叠世延长组湖侵期沉积特征[J].石油勘探与开发,2010,37(2):181-187.
    [21]张海波.页岩油气在页岩孔隙中行为的分子模拟[D].北京:北京化工大学,2017.
    [22]王淑玲,吴西顺,张炜,等.全球页岩油气勘探开发进展及发展趋势[J].中国矿业,2016,25(2):7-11.
    [23] XU Q H,SHI W Z,XIE X Y,et al. Inversion and propagation of the Late Paleozoic Porjianghaizi fault(North Ordos Basin,China):Controls on sedimentation and gas accumulations[J]. Marine and Petroleum Geology,2018,91:706-722.
    [24] LI J,LI J,LI Z S,et al. Characteristics and genetic types of the Lower Paleozoic natural gas,Ordos Basin[J]. Marine and Petroleum Geology,2018,89:106-119.
    [25]高峰,王岳军,刘顺生,等.利用磷灰石裂变径迹研究鄂尔多斯盆地西缘热历史[J].大地构造与成矿学,2000,24(1):87-65.
    [26] QIU X W,LIU C Y,WANG F F,et al. Trace and rare earth element geochemistry of the Upper Triassic mudstones in the southern Ordos Basin,central China[J]. Geological Journal,2015,50(4):399-413.
    [27] PAN S Q,HORSFIELD B,ZOU C N,et al. Statistical analysis as a tool for assisting geochemical interpretation of the Upper Triassic Yanchang Formation,Ordos Basin,central China[J]. International Journal of Coal Geology,2017,173:51-64.
    [28] MA H,YANG Q,YIN L,et al. Paleoclimate interpretation in northern Ordos Basin:evidence from isotope records of groundwater[J]. Quaternary International,2018,467:204-209.
    [29]赵俊兴,陈洪德.鄂尔多斯盆地侏罗纪早中期甘陕古河的演化变迁[J].石油与天然气地质,2006,27(2):152-158.
    [30] MA Z,ZHU H,ZHANG K. The Oil-Forming System of Mesozoic in the South Ordos Basin[M]. Beijing:Petroleum Industry Press,2001:1-10.
    [31]毛明陆,李元昊,刘联群,等.鄂尔多斯盆地晚三叠世湖盆沉积演化与层序地层特征[J].西北大学学报(自然科学版),2006,36(1):52-59.
    [32]卢进才,李玉宏,魏仙样,等.鄂尔多斯盆地三叠系延长组长7油层组油页岩沉积环境与资源潜力研究[J].吉林大学学报(地球科学版),2006,36(6):928-932.
    [33]吉利明,徐金鲤,宋之光.鄂尔多斯盆地延长组湖相蓝藻及其油源意义[J].微体古生物学报,2012,29(3):270-281.
    [34] DUAN Y,WANG C Y,ZHENG C Y,et al. Geochemical study of crude oils from the Xifeng oilfield of the Ordos Basin,China[J]. Journal of Asian Earth Sciences,2008,31(4/6):341-356.
    [35] TAYLOR S R,MCLENNAN S M. The geochemical evolution of the continental crust[J]. Reviews of Geophysics,1995,33(2):241-265.
    [36]孟昊,任影,钟大康,等.四川盆地东部寒武系龙王庙组地球化学特征及其古环境意义[J].天然气地球科学,2016,27(7):1299-1311.
    [37]罗伟,刘池洋,张东东,等.贺兰山—六盘山地区中侏罗统直罗组地球化学特征及其地质意义[J].古地理学报,2016,18(6):1030-1043.
    [38] COX R,LOWE D R,CULLERS R L. The influence of sediment recycling and basement composition on evolution of mudrock chemistry in the southwestern United States[J]. Geochimica et Cosmochimica Acta,1995,59(14):2919-2940.
    [39] HASKIN L A,HASKIN M A,FREY F A,et al. Relative and absolute terrestrial abundances of the rare earths[J]. Origin&Distribution of the Elements,1968(2):889-912.
    [40]涂其军.准噶尔盆地南缘芦草沟组稀土元素地球化学特征、物源性质和构造背景分析[J].新疆地质,2016,34(3):345-349.
    [41] SUN S S,MCDONOUGH W F. Chemical and isotopic systematics of oceanic basalts:implications for mantle composition and processes[J]. Geological Society,London,Special Publications,1989,42(1):313-345.
    [42] LERMAN A,BACCINI P. Lakes-chemistry,geology,physics[J]. Journal of Geology,1978,88(2):249-250.
    [43] HUANG R. Paleoclimate evolution and elements transfer,assemblage and evolution interrestrial sediments[M]//Lanzhou Geology Research Institute,Chinese Academy of Sciences. Collection of Lanzhou Geology Research Institute,Chinese Academy of Sciences. Beijing:Science Press,1982:12-18.
    [44] HATCH J R,LEVENTHAL J S. Relationship between inferred redox potential of the depositional environment and geochemistry of the Upper Pennsylvanian(Missourian)Stark Shale Member of the Dennis Limestone,Wabaunsee County,Kansas,U. S. A.[J]. Chemical Geology,1992,99(1/3):65-82.
    [45] OWEN L A,FINKEL R C,BARNARD P L,et al. Climatic and topographic controls on the style and timing of Late Quaternary glaciation throughout Tibet and the Himalaya defined by10Be cosmogenic radionuclide surface exposure dating[J]. Quaternary Science Reviews,2005,24(12/13):1391-1411.
    [46]宋明水.东营凹陷南斜坡沙四段沉积环境的地球化学特征[J].矿物岩石,2005,25(1):67-73.
    [47]刘刚,周东升.微量元素分析在判别沉积环境中的应用——以江汉盆地潜江组为例[J].石油实验地质,2007,29(3):307-310.
    [48] CAO J,WU M,CHEN Y,et al. Trace and rare earth element geochemistry of Jurassic mudstones in the northern Qaidam Basin,northwest China[J]. Chemie Der Erde-Geochemistry,2012,72(3):245-252.
    [49] MORADI A V,SARI A,AKKAYA P. Geochemistry of the Miocene oil shale(Hancili Formation)in theCankiri-Corum Basin,central Turkey:Implications for Paleoclimate conditions,sourcearea weathering,provenance and tectonic setting[J]. Sedimentary Geology,2016,341:289-303.
    [50]胡晓峰,刘招君,柳蓉,等.桦甸盆地始新统桦甸组黏土矿物和无机地球化学特征及其古环境意义[J].煤炭学报,2012,37(3):416-423.
    [51]陈骏,汪永进,陈旸,等.中国黄土地层Rb和Sr地球化学特征及其古季风气候意义[J].地质学报,2001,75(2):259-266.
    [52] YE H,ZHANG K X,JI J L,et al. Major and trace element characters of the sediments and Paleoclimatic evolvement during about 23. 1-5. 0 Ma in Xunhua Basin,Qinghai[J]. Journal of Earth Science,2010,35(5):811-820.
    [53] WIGNALL P B,TWITCHETT R J. Oceanic anoxia and the End Permian Mass Extinction[J]. Science,1996,272:1155.
    [54] JONES B,MANNING D A C. Comparison of geochemical indices used for the interpretation of palaeoredox conditions in ancient mudstone[J]. Chemical Geology,1994,111:111-129.
    [55]吴朝东,陈其英.湘西黑色岩系地球化学特征和成因意义[J].岩石矿物学杂志,1999,18(1):26-39.
    [56]王争鸣.缺氧沉积环境的地球化学标志[J].甘肃地质,2003,12(2):55-58.
    [57]陈践发,孙省利,刘文汇,等.塔里木盆地下寒武统底部富有机质层段地球化学特征及成因探讨[J].中国科学(地球科学),2004,34(增):107-113.
    [58] RIMMER S M. Geochemical paleoredox indicators in DevonianMississippian black shales,Central Appalachian Basin(USA)[J]. Chemical Geology,2004,206(3/4):373-391.
    [59] SCHEFFLER K,BUEHMANN D,SCHWARK L. Analysis of Late Palaeozoic glacial to postglacial sedimentary successions in South Africa by geochemical proxies:response to climate evolution and sedimentary environment[J]. Palaeogeography,Palaeoclimatology,Palaeoecology,2006,240(2):184-203.
    [60] EMERSON S R. HUESTED S S. Ocean anoxia and the concentrations of molybdenum and vanadium in seawater[J]. Marine Chemistry,1991,34(3/4):177-196.
    [61]谭先锋,田景春,黄建红,等.陆相碎屑岩旋回沉积记录中的物质响应及聚集规律——以济阳坳陷王家岗地区古近系孔店组为例[J].石油与天然气地质,2013,34(3):332-341.
    [62]徐崇凯,刘池洋,郭佩,等.潜江凹陷古近系潜江组盐间泥岩地球化学特征及地质意义[J].沉积学报,2018,36(3):194-206.
    [63]杜轶伦,曹毅,李大鹏,等.安徽铜陵志留系—三叠系地层层序地层和微量元素地球化学:对沉积环境的约束[J].现代地质,2014,18(2):281-291.
    [64]郑荣才,柳梅青.鄂尔多斯盆地长6油层组古盐度研究[J].石油与天然气地质,1999,20(1):20-25.
    [65]毛光周,刘晓通,安鹏瑞,等.无机地球化学指标在古盐度恢复中的应用及展望[J].山东科技大学学报(自然科学版),2018,37(1):92-102.
    [66]李被,刘池洋,黄雷,等.东濮凹陷北部沙河街组三段中亚段沉积环境分析[J].现代地质,2018,32(2):227-239.
    [67]雷卞军,阙洪培,胡宁,等.鄂西古生代硅质岩的地球化学特征及沉积环境[J].沉积与特提斯地质,2002,22(2):70-79.
    [68]田洋,赵小明,王令占,等.重庆石柱二叠纪栖霞组地球化学特征及其环境意义[J].沉积学报,2014,32(6):1035-1045.
    [69]文华国,郑荣才,唐飞,等.鄂尔多斯盆地耿湾地区长6段古盐度恢复与古环境分析[J].矿物岩石,2008,28(1):114-120.
    [70]郑玉龙,马志强,王佰长,等.黑龙江省柳树河盆地始新统八虎力组油页岩元素地球化学特征及沉积环境[J].古地理学报,2015,17(5):689-698.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700