用户名: 密码: 验证码:
川西拉拉含矿镁铁质层状岩体的成因及构造背景
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:THE PETROGENESIS AND TECTONIC SETTING OF THE ORE-BEARING MAFIC LAYERED INTRUSIONS IN LALA AREA,WESTERN SICHUAN
  • 作者:孙君一 ; 于文佳 ; 崔加伟 ; 李重 ; 罗照华
  • 英文作者:SUN Junyi;YU Wenjia;CUI Jiawei;LI Zhong;LUO Zhaohua;State Key Laboratory of Geological Processes and Mineral Resources,China University of Geosciences (Beijing);Institute of Geomechanics,Chinese Academy of Geological Sciences;
  • 关键词:拉拉矿区 ; 层状岩体 ; 主、微量元素 ; 岩石圈地幔 ; 岩石成因
  • 英文关键词:Lala mining area;;layered intrusions;;major and trace elements;;lithospheric mantle;;petrogenesis
  • 中文刊名:地质力学学报
  • 英文刊名:Journal of Geomechanics
  • 机构:中国地质大学(北京)地质过程与矿产资源国家重点实验室;中国地质科学院地质力学研究所;
  • 出版日期:2019-02-15
  • 出版单位:地质力学学报
  • 年:2019
  • 期:01
  • 基金:中国地质调查局地质调查项目(1212011220921,1221011121266,12120113094100,1212011121075)
  • 语种:中文;
  • 页:145-156
  • 页数:12
  • CN:11-3672/P
  • ISSN:1006-6616
  • 分类号:P581
摘要
川西拉拉含矿镁铁质层状岩体位于扬子地块西缘,构造环境复杂,关于其成因机制及岩浆源区的问题至今仍缺乏系统的研究。文章针对该岩体七个岩相带,进行了主、微量元素和Sr-Nd同位素分析,结果表明,七个岩相带(YWS-1—YWS-7)是岩浆经历不同的演化过程而形成的。其中,第五相带SiO2含量高(42. 95%~44. 07%),MgO含量低(1. 62%~1. 89%),稀土总量明显偏低(295. 32×10~(-6)~366. 36×10~(-6)),Cr、Ni含量偏低,87Sr/86Sr为0. 7391~0. 7812,是受到地壳混染所致;其它相带Mg#值高(0. 54~0. 74),稀土总量偏高(672. 53×10~(-6)~986. 66×10~(-6)),87Sr/86Sr为0. 7087~0. 7097,显示岩石圈地幔源区特征。结合区域地质背景分析,认为该层状岩体产生于大陆裂谷构造环境,岩浆来源于岩石圈地幔源区,演化过程中结晶分异和多次脉动作用相伴。这一活动过程与新元古时期扬子板块西缘的超级地幔柱活动有关。
        The ore-bearing mafic layered intrusions in Lala District,Western Sichuan Province,is located on the west margin of the Yangzi platform with complex tectonic environment,and there is still a lack of systematic research on its genesis mechanism and magmatic source. The main,trace elements and Sr-Nd isotopes of the seven lithofacies belts are analyzed in this article,and the results show that the seven lithofacies belts(YWS-1—YWS-7) were formed by different evolution processes of magma. The fifth lithofacies(YWS-5) represents the magma derived from mantle contaminated by earth crust,with high SiO_2 content(42. 95% ~ 44. 07%),low MgO content(1. 62% ~ 1. 89%),obviously low total amount of rare earth elements(295. 32×10~(-6)~ 366. 36×10~(-6)),low content of Cr,Ni,~(87)Sr/~(86)Sr 0. 7391~ 0. 7812; other lithofacies represent the magma derived from lithospheric mantle source area,with high Mg#content(0. 54 ~ 0. 74),high content of rare earth elements(672. 53×10~(-6)~ 986. 66×10~(-6)),~(87)Sr/~(860Sr 0. 7087 ~ 0. 7097. Based on the analysis of regional geological background,it is concluded that the layered intrusions were produced in continental rift tectonic environment and the magma originated from lithospheric mantle source area,with crystallization differentiation and multiple pulsations associated in the evolution process. This process is related to the Neoproterozoic super mantle plume activities on the western margin of the Yangtze plate.
引文
[1] Stewart B W,De Paolo D J. Isotopic studies of processes in mafic magma chambers:II. The Skaergaard intrusion, East Greenland[J]. Contributions to Mineralogy and Petrology,1990,104(2):125~141.
    [2] Irvine T N. Crystallization sequences in the Muskox intrusion and other layered intrusions—II. Origin of chromitite layers and similar deposits of other magmatic ores[J]. Geochimica et Cosmochimica Acta,1975,39(6~7):991~1008,IN9-IN10,1009~1020.
    [3] Kruger F J,Marsh J S. Significance of87Sr/86Sr ratios in the Merensky cyclic unit of the Bushveld Complex[J]. Nature,1982,298(5869):53~55.
    [4] Kruger F J. Filling the Bushveld Complex magma chamber:lateral expansion, roof and floor interaction, magmatic unconformities,and the formation of giant chromitite,PGE and Ti-V-magnetitite deposits[J]. Mineralium Deposita,2005,40(5):451~472.
    [5] Palacz Z A. Isotopic and geochemical evidence for the evolution of a cyclic unit in the Rhum intrusion,north-west Scotland[J]. Nature,1984,307(5952):618~620.
    [6]钟宏,胡瑞忠,朱维光,等.层状岩体的成因及成矿作用[J].地学前缘,2007,14(2):159~172.ZHONG Hong,HU Ruizhong,ZHU Weiguang,et al. Genesis and mineralization of layered intrusions[J]. Earth Science Frontiers,2007,14(2):159~172.(in Chinese with English abstract)
    [7]朱志敏.拉拉铁氧化物铜金矿:成矿时代和金属来源[D].成都:成都理工大学,2011.ZHU Zhimin. Lala iron oxide copper gold deposit:metallogenic epoch and metal sources[J]. Chengdu:Chengdu University of Technology,2011:52~54.(in Chinese with English abstract)
    [8]周家云,郑荣才,朱志敏,等.拉拉铜矿黄铁矿微量元素地球化学特征及其成因意义[J].矿物岩石,2008,28(3):64~71.ZHOU Jiayun, ZHENG Rongcai, ZHU Zhimin, et al.Geochemical characteristics of trace elements of pyrite and its implications to the metallogenesis in the Lala copper deposit[J]. Journal of Mineralogy and Petrology,2008,28(3):64~71.(in Chinese with English abstract)
    [9]周家云,郑荣才,朱志敏,等.四川会理拉拉铜矿辉长岩群地球化学与Sm-Nd同位素定年[J].矿物岩石地球化学通报,2009,28(2):111~122.ZHOU Jiayun, ZHENG Rongcai, ZHU Zhimin, et al.Geochemistry and Sm-Nd dating of the gabbro in the Lala copper ore district,Sichuan Province,China[J]. Bulletin of Mineralogy,Petrology and Geochemistry,2009,28(2):111~122.(in Chinese with English abstract)
    [10]孙君一,于文佳,唐泽勋,等.川西拉拉Fe-Cu矿区含矿镁铁质层状岩席的首次发现及其成岩成矿意义[J/OL].地学前缘,2017,24. https://doi. org/10. 13745/j. esf. yx.2017-3-54SUN Junyi, YU Wenjia, TANG Zexun, et al. Firstly discovering the ore-bearing mafic layered sill in the Lala Fe-Cu ore district, Western Sichuan Province, China, and its implications for petrogenesis and metallogenesis[J/OL]. Earth Science Frontiers,2017,24. https://doi. org/10. 13745/j.esf. yx. 2017-3-54(in Chinese with English abstract)
    [11]于文佳,罗照华,刘永顺,等.拉拉铁铜矿床成因:来自隐爆角砾岩结构定量化和锆石U-Pb年代学的证据[J].岩石学报,2017,33(3):925~941.YU Wenjia,LUO Zhaohua,LIU Yongshun,et al. Petrogenesis of the Lala iron-copper deposit:Evidence by cryptoexplosive breccia CSD data and their zircon U-Pb data[J]. Acta Petrologica Sinica,2017,33(3):925~941.(in Chinese with English abstract)
    [12] Pin C,Zalduegui J S. Sequential separation of light rare-earth elements, thorium and uranium by miniaturized extraction chromatography:Application to isotopic analyses of silicate rocks[J]. Analytica Chimica Acta,1997,339(1~2):79~89.
    [13] Chen F,Siebel W,Satir M,et al. Geochronology of the Karadere basement(NW Turkey)and implications for the geological evolution of the Istanbul zone[J]. International Journal of Earth Sciences,2002,91(3):469~481.
    [14] Green D H. Genesis of Archean Peridotitic magmas and constraints on Archean geothermal gradients and tectonics[J].Geology,1975,3(1):15~18.
    [15] Frey F A,Green D H,Roy S D. Integrated models of basalt Petrogenesis:a study of quartz Tholeiites to olivine Melilitites from south eastern Australia utilizing geochemical and experimental petrological data[J]. Journal of Petrology,1978,19(3):463~513.
    [16] Hastie A R,Kerr A C,Pearce J A,et al. Classification of altered volcanic island arc rocks using immobile trace elements:development of the Th-Co discrimination diagram[J]. Journal of Petrology,2007,48(12):2341~2357.
    [17] Winchester J A, Floyd P A. Geochemical magma type discrimination:application to altered and metamorphosed basic igneous rocks[J]. Earth and Planetary Science Letters,1976,28(3):459~469.
    [18] Wilson M B. Igneous petrogenesis a global tectonic approach[M]. Netherlands:Springer,1989.
    [19]李献华,周汉文,李正祥,等.川西新元古代双峰式火山岩成因的微量元素和Sm—Nd同位素制约及其大地构造意义[J].地质科学,2002,37(3):264~276.LI Xianhua, ZHOU Hanwen, LI Zhengxiang, et al.Petrogenesis of Neoproterozoic bimodal volcanics in western Sichuan and its tectonic implications:Geochemical and Sm-Nd isotopic constraints[J]. Chinese Journal of Geology,2002,37(3):264~276.(in Chinese with English abstract)
    [20]姜常义,张蓬勃,卢登荣,等.新疆塔里木板块西部瓦吉里塔格地区二叠纪超镁铁岩的岩石成因与岩浆源区[J].岩石学报,2004,20(6):1433~1444.JIANG Changyi, ZHANG Pengbo, LU Dengrong, et al.Petrogenesis and magma source of the ultramafic rocks at Wajilitag region,western Tarim Plate in Xinjiang[J]. Acta Petrologica Sinica,2004,20(6):1433~1444.(in Chinese with English abstract)
    [21] Sun S S,Mc Donough W F. Chemical and isotopic systematics of oceanic basalts:implications for mantle composition and processes[J]. Geological Society, London, Special Publications,1989,42(1):313~345.
    [22]丁林,张进江,周勇,等.青藏高原岩石圈演化的记录:藏北超钾质及钠质火山岩的岩石学与地球化学特征[J].岩石学报,1999,15(3):408~421.DING Lin,ZHANG Jinjiang,ZHOU Yong,et al. Tectonic implication on the lithosphere evolution of the Tibet Plateau:petrology and geochemistry of sodic and ultrapotassic volcanism in Northern Tibet[J]. Acta Petrologica Sinica,1999,15(3):408~421.(in Chinese with English abstract)
    [23]曾威,司马献章,王家松,等.周庵铜镍-铂族矿床锆石UPb年代学、地球化学及Sr-Nd同位素特征:对周庵基性-超基性岩体及矿床成因的探讨[J].岩石学报,2016,32(4):1232~1248.ZENG Wei, SIMA Xianzhang, WANG Jiasong, et al.Geochronology,geochemistry and Sr-Nd isotope characteristics of Zhou'an Cu-Ni-PGE deposit:genesis of mafic-ultramafic rock and ore deposit[J]. Acta Petrologica Sinica,2016,32(4):1232~1248.(in Chinese with English abstract)
    [24] Qi L,Wang C Y,Zhou M F. Controls on the PGE distribution of Permian Emeishan alkaline and peralkaline volcanic rocks in Longzhoushan,Sichuan Province, SW China[J]. Lithos,2008,106(3~4):222~236.
    [25]赵莉,张招崇,王福生,等.一个开放的岩浆房系统:攀西新街镁铁-超镁铁质层状岩体[J].岩石学报,2006,22(6):1565~1578.ZHAO Li,ZHANG Zhaochong,WANG Fusheng,et al. Opensystem magma chamber:an example from the Xinjie maficultramafic layered intrusion in Panxi region,SW China[J].Acta Petrologica Sinica,2006,22(6):1565~1578.(in Chinese with English abstract)
    [26] Taylor S R, Mc Lennan S M. The continental crust:its composition and evolution[J]. Oxford:Blackwell Scientific Pub.,1985.
    [27] Hanski E J,Smolkin V F. Iron-and LREE-enriched mantle source for early Proterozoic intraplate magmatism as exemplified by the Pechenga ferropicrites,Kola Peninsula,Russia[J].Lithos,1995,34(1~3):107~125.
    [28] Mc Kenzie D,O'Nions R K. The source regions of ocean Island Basalts[J]. Journal of Petrology,1995,36(1):133~159.
    [29] Garuti G,Bea F,Zaccarini F,et al. Age,geochemistry and Petrogenesis of the ultramafic pipes in the Ivrea zone,NW Italy[J]. Journal of Petrology,2001,42(2):433~457.
    [30]夏昭德,姜常义,夏明哲,等.镁铁质-超镁铁质层状岩体基本特征及岩浆作用[J].西北地质,2011,44(1):85~94.XIA Zhaode, JIANG Changyi, XIA Mingzhe, et al.Characteristics and magmatism of mafic ultramafic layered intrusions[J]. Northwestern Geology,2011,44(1):85~94.(in Chinese with English abstract)
    [31]姜常义,夏明哲,钱壮志,等.新疆喀拉通克镁铁质岩体群的岩石成因研究[J].岩石学报,2009,25(4):749~764.JIANG Changyi, XIA Mingzhe, QIAN Zhuangzhi, et al.Petrogenesis of Kalatongke mafic rock intrusions,Xinjiang[J].Acta Petrologica Sinica, 2009, 25(4):749~764.(in Chinese with English abstract)
    [32] Zieg M J,Marsh B D. Multiple reinjections and crystal-mush compaction in the Beacon Sill, Mc Murdo Dry Valleys,Antarctica[J]. Journal of Petrology,2012,53(12):2567~2591.
    [33] Egorova V,Latypov R. Mafic-ultramafic sills:new insights from M-and S-shaped mineral and whole-rock compositional profiles[J]. Journal of Petrology,2013,54(10):2155~2191.
    [34]李德东,罗照华,周久龙,等.岩墙厚度对成矿作用的约束:以石湖金矿为例[J].地学前缘,2011,18(1):166~178.LI Dedong,LUO Zhaohua,ZHOU Jiulong,et al. Constraints of dike thicknesses on the metallogenesis and its application to the Shihu gold deposit[J]. Earth Science Frontiers,2011,18(1):166~178.(in Chinese with English abstract)
    [35]马帅,陈世悦,孙娇鹏,等.祁漫塔格肯德可克火山岩锆石LA-ICP-MS U-Pb、40Ar/39Ar年龄及地质意义[J].地质力学学报,2017,23(4):558~566.MA Shuai,CHEN Shiyue,SUN Jiaopeng,et al. A study on zircon LA-ICP-MS U-PB and40Ar/39Ar ages of volcanic rocks from kendekeke, qimantage and the geological significance[J]. Journal of Geomechanics,2017,23(4):558~566.(in Chinese with English abstract)
    [36]黄小龙,徐义刚,杨启军,等.滇西晚始新世高镁富钾火山岩的地球化学特征及其岩石成因机制探讨[J].地球化学,2007,36(2):120~138.HUANG Xiaolong, XU Yigang, YANG Qijun, et al.Geochemistry of Late Eocene high-Mg ultrapotassic lavas from western Yunnan, China:constraints on petrogenesis[J].Geochimica,2007,36(2):120~138.(in Chinese with English abstract)
    [37]秦涛,李林川,唐振,等.大兴安岭扎兰屯地区四班岩体岩石成因及构造环境研究[J].地质力学学报,2017,23(3):369~381.QIN Tao,LI Linchuan,TANG Zhen,et al. A study on the petrogenesis and tectonic setting of the siban granite mass in Zhalantun area,Great khingan[J]. Journal of Geomechanics,2017,23(3):369~381.(in Chinese with English abstract)

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700