用户名: 密码: 验证码:
地表“矿物膜”:地球“新圈层”
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:“Mineral membrane” of the surface: “New sphere” of the Earth
  • 作者:鲁安怀 ; 李艳 ; 丁竑瑞 ; 王长秋
  • 英文作者:LU AnHuai;LI Yan;DING HongRui;WANG ChangQiu;School of Earth and Space Sciences,Peking University,MOE Key Laboratory of Orogenic Belts and Crustal Evolution,Beijing Key Laboratory of Mineral Environmental Function;
  • 关键词:地表“矿物膜” ; 水钠锰矿 ; 元素Ce ; 矿物光电子 ; 地球“新圈层”
  • 英文关键词:"Mineral membrane";;Birnessite;;Element of Ce;;Mineral photoelectron;;"New sphere"
  • 中文刊名:岩石学报
  • 英文刊名:Acta Petrologica Sinica
  • 机构:北京大学地球与空间科学学院造山带与地壳演化教育部重点实验室矿物环境功能北京市重点实验室;
  • 出版日期:2019-01-15
  • 出版单位:岩石学报
  • 年:2019
  • 期:01
  • 基金:科技部“973”项目(2007CB815600、2014CB846000);; 国家自然科学基金重点项目(41230103、91851208);; 国际合作重点项目(41820104003);; 优秀青年基金项目(41522201)和面上项目(41872042)联合资助
  • 语种:中文;
  • 页:125-134
  • 页数:10
  • CN:11-1922/P
  • ISSN:1000-0569
  • 分类号:P57
摘要
地球表层是一个极为复杂的开放系统,其中所充满的阳光、大气、水分、有机酸、无机酸/盐、矿物质和微生物等彼此之间无时无刻不在发生着人们尚未充分认识到的多种自然作用。本文采用环境矿物学、半导体物理学与光电化学等交叉学科研究手段,在我国南方红壤、西南喀斯特和西北戈壁等典型陆地生境中,发现直接暴露于太阳光下的土壤/岩石表面广泛发育有几十纳米到数百微米厚度的铁锰氧化物"矿物膜";详细研究了铁锰氧化物"矿物膜"中矿物组成及其精细结构特征,发现半导体性能优异的水钠锰矿普遍存在,其晶体结构中富含促进其光催化功能的稀土元素Ce。在这些生境中,矿物岩石表面所包覆的铁锰氧化物"矿物膜"总是朝着太阳光发育,岩石背面却不出现"矿物膜",揭示出太阳光照射下的地球陆地表面普遍存在的"矿物膜"与太阳光有着直接的响应关系。光电化学测试结果显示,天然"矿物膜"具有较好的日光响应性能,由其制成的电极在可见光照射下皆能产生明显的光电流,而不含铁锰氧化物矿物的岩石基质样品及石英、长石等矿物样品几乎不产生光电流,表明"矿物膜"光电流的产生主要与铁锰氧化物有关。进一步测得"矿物膜"中主要铁锰氧化物的禁带宽度均小于2. 5eV,证明其均为对可见光具有广泛而良好吸收的天然半导体矿物。以全球日光平均辐照强度100mW/cm~2计以及全球典型生境中"矿物膜"分布面积估算,全球"矿物膜"吸收太阳能等效为生物质能的最大量与2017年度全球糖类产量(1. 92亿吨)相当。铁锰氧化物"矿物膜"不仅存在于陆地地表,还存在于海洋透光层中。可以认为地表"矿物膜"是地球上分布最广的天然"太阳能薄膜",从功能上"矿物膜"相当于继地核、地幔和地壳之后的地球第四大圈层,事实上构成了地球"新圈层",也是地球在太阳光能量驱动下发生外营力地质作用的关键地带。在此基础上,本文提出从"矿物膜"中产生的矿物光电子与太阳光子和元素价电子共同组成了地表存在的三种主要能量形式的认识。深入探讨太阳光照射下地表多圈层交互作用界面上所发生的电子传递与能量转化的微观机制,有助于深刻理解地表"矿物膜"这一地球"新圈层"如何影响地球物质演化、生命起源进化与环境变化演变的宏观过程。
        The terrestrial system on Earth surface is a very complicated open system,where the sunlight,air,water,organic acids,inorganic acids/salts,minerals and microorganisms are always closely interacting with each other. And these natural interactions still await further scientific investigations. Based on the cross-field research methods of environmental mineralogy,semiconducting physics and photoelectron-chemistry,this study revealed a ferromanganese"mineral membrane"widely developed on rock and soil surfaces and directly exposed under sunlight,in such various typical terrestrial environments as Gobi desert,karst regions and red soils areas. This"mineral membrane"is usually of several tens of nanometer to hundreds of micrometer in thickness. The fine structural characteristics of the Mn oxides in"mineral membrane"were investigated,and the prevalent existence of layered-type birnessite was proved. Besides,the rare earth element Ce was found to be structurally-correlated with birnessite in "mineral membrane",which could promote its semiconducting function. The "mineral membrane"is always developed on the surface sides of rocks rather than the reverse sides,indicating a direct correspondence with sunlight exposure. As revealed by photoelectron-chemistry experiments,electrodes made of natural"mineral membrane"powders could generate remarkable photocurrents under illumination of visible light,whereas the rock substrates and quartz and feldspar minerals could barely achieve that. These results indicated the generation of photocurrent was mainly due to the Fe-and Mn-oxides. Further measurements showed the bandgap of main Fe-and Mn-oxides in"mineral membrane"are all below 2. 5 eV,suggesting they are all visible light responsive semiconducting minerals. Based on the worldwide average solar irradiation intensity of 100 mW/cm2 and the global distribution areas of"mineral membrane",it was estimated that the energy mass of solar energy converted to biomass energy by "mineral membrane"could parallel with the global sugar production of the year 2017( 192 million tons). Last but not least,the ferromanganese"mineral membrane"not only spreads on land surface but also reaches out to the marine euphotic zones. "Mineral membrane"of the Earth surface functions as the fourth great layer section,named here"new sphere"of the Earth,following the earth's core,mantle and crust,and as the critical zone promoting external-power geological processes under solar irradiation. We therefore proposed that the three main energy forms on Earth surface as photoelectrons from"mineral membrane",solar photons and valence electrons of elements. The photoelectrons from "mineral membrane"can participate varieties of biogeochemical processes,and make a ubiquitous and profound impact on the matter cycling on planets' surface.
引文
Boyd PW,Mackie DS and Hunter KA.2010.Aerosol iron deposition to the surface ocean:Modes of iron supply and biological responses.Marine Chemistry,120(1-4):128-143
    Broecker WS and Liu TZ.2001.Rock varnish:Recorder of desert wetness?GSA Today,11(8):4-10
    Dorn RI.1991.Rock varnish.American Scientist,79(6):542-553
    Dorn RI.1998.Rock Coatings.Amsterdam:Elsevier
    Dorn RI.2007.Rock varnish.In:Nash DJ and Mc Laren SJ(eds.).Geochemical Sediments and Landscapes.Malden:Blackwell,246-297Dorn RI.2009.Desert rock coatings.In:Parsons AJ and Abrahams AD(eds.).Geomorphology of Desert Environments.Dordrecht:Springer,153-186
    Duce RA and Tindale NW.1991.Atmospheric transport of iron and its deposition in the ocean.Limnology and Oceanography,36(8):1715-1726
    Frey CE,Wiechen M and Kurz P.2014.Water-oxidation catalysis by synthetic manganese oxides-systematic variations of the calcium birnessite theme.Dalton Transactions,43(11):4370-4379
    Garvie LAJ,Burt DM and Buseck PR.2008.Nanometer-scale complexity,growth,and diagenesis in desert varnish.Geology,36(3):215-218
    Goldsmith Y,Stein M and Enzel Y.2014.From dust to varnish:Geochemical constraints on rock varnish formation in the Negev Desert,Israel.Geochimica et Cosmochimica Acta,126:97-111
    Guieu C,Duce R and Arimoto R.1994.Dissolved input of manganese to the ocean:Aerosol source.Journal of Geophysical Research,99(D9):18789-18800
    Hu AH,Guo JJ,Pan H and Zuo ZW.2018.Selective functionalization of methane,ethane,and higher alkanes by cerium photocatalysis.Science,361(6403):668-672,doi:10.1126/science.aat9750
    Igarashi K and Kato S.2017.Extracellular electron transfer in acetogenic bacteria and its application for conversion of carbon dioxide into organic compounds.Applied Microbiology and Biotechnology,101(16):6301-6307,doi:10.1007/s00253-017-8421-3
    Johnson JE,Webb SM,Thomas K,Ono S,Kirschvink JL and Fischer WW.2013.Manganese-oxidizing photosynthesis before the rise of cyanobacteria.Proceedings of the National Academy of Sciences of the United States of America,110(28):11238-11243
    Kirk JTO.1994.Light and Photosynthesis in Aquatic Ecosystems.Cambridge:Cambridge University Press
    Kornienko N,Sakimoto KK,Herlihy DM,Nguyen SC,Alivisatos AP,Harris CB,Schwartzberg A and Yang PD.2016.Spectroscopic elucidation of energy transfer in hybrid inorganic-biological organisms for solar-to-chemical production.Proceedings of the National Academy of Sciences of the United States of America,113(42):11750-11755
    Krinsley D.1998.Models of rock varnish formation constrained by high resolution transmission electron microscopy.Sedimentology,45(4):711-725
    Kuma K,Nakabayashi S,Suzuki Y,Kudo I and Matsunaga K.1992.Photo-reduction of Fe(Ⅲ)by dissolved organic substances and existence of Fe(Ⅱ)in seawater during spring blooms.Marine Chemistry,37(1-2):15-27
    Landing WM and Bruland KW.1980.Manganese in the North Pacific.Earth and Planetary Science Letters,49(1):45-56
    Li Y,Xu XM,Li YZ,Ding C,Wu J,Lu AH,Ding HR,Qin S and Wang CQ.2018.Absolute band structure determination on naturally occurring rutile with complex chemistry:Implications for mineral photocatalysis on both Earth and Mars.Applied Surface Science,439:660-671
    Liu TZ and Broecker WS.2000.How fast does rock varnish grow?Geology,28(2):183-186
    Lu AH.2003.Mineralogical photocatalysis in natural self-purification of inorganic minerals.Acta Petrologica et Mineralogica,22(4):323-331(in Chinese with English abstract)
    Lu AH,Liu J,Zhao DG,Guo YJ,Li QR and Li N.2004.Photocatalysis of V-bearing rutile on degradation of halohydrocarbons.Catalysis Today,90(3-4):337-342
    Lu AH,Li Y,Lv M,Wang CQ,Yang L,Liu J,Wang YH,Wong KHand Wong PK.2007.Photocatalytic oxidation of methyl orange by natural V-bearing rutile under visible light.Solar Energy Materials and Solar Cells,91(19):1849-1855
    Lu AH,Li Y,Jin S,Wang X,Wu XL,Zeng CP,Li Y,Ding HR,Hao RX,Lv M,Wang CQ,Tang YQ and Dong HL.2012.Growth of non-phototrophic microorganisms using solar energy through mineral photocatalysis.Nature Communications,3:768
    Lu AH,Li Y,Wang X,Ding HR,Zeng CP,Yang XX,Hao RX,Wang CQ and Santosh M.2013.Photoelectrons from minerals and microbial world:A perspective on life evolution in the early Earth.Precambrian Research,231:401-408
    Lu AH,Li Y,Wang X,Ding HR,Zeng CP,Hao RX and Wang CQ.2013.The utilization of solar energy by non-phototrophic microorganisms through semiconducting minerals.Microbiology China,40(1):190-202(in Chinese with English abstract)
    Lu AH,Li Y,Wang X,Ding HR,Liu Y and Wang CQ.2014a.The photoelectron generation from semiconducting minerals and its effects in critical zone.Earth Science Frontiers,21(3):256-264(in Chinese with English abstract)
    Lu AH,Wang X,Li Y,Ding HR,Wang CQ,Zeng CP,Hao RX and Yang XX.2014b.Mineral photoelectrons and their implications for the origin and early evolution of life on Earth.Science China(Earth Sciences),57(5):897-902
    Lu AH,Li Y,Ding HR and Wang CQ.2018.Mineralogical photoelectrons and minerals and microorganisms synergistic interactions.Bulletin of Mineralogy,Petrology and Geochemistry,37(1):1-15(in Chinese with English abstract)
    Macholdt DS,Jochum KP,P9hlker C,Arangio A,F9rster JD,Stoll B,Weis U,Weber B,Müller M,Kappl M,Shiraiwa M,Kilcoyne ALD,Weigand M,Scholz D,Haug GH,Al-Amri A and Andreae MO.2017.Characterization and differentiation of rock varnish types from different environments by microanalytical techniques.Chemical Geology,459:91-118
    Mc Keown DA and Post JE.2001.Characterization of manganese oxide mineralogy in rock varnish and dendrites using X-ray absorption spectroscopy.American Mineralogist,86(5-6):701-713
    Perry RS and Adams JB.1978.Desert varnish:Evidence for cyclic deposition of manganese.Nature,276(5687):489-491
    Potter RM and Rossman GR.1979.The manganese-and iron-oxide mineralogy of desert varnish.Chemical Geology,25(1-2):79-94
    Sakimoto KK,Zhang SJ and Yang PD.2016.Cysteine-cystine photoregeneration for oxygenic photosynthesis of acetic acid from CO2by a tandem inorganic-biological hybrid system.Nano Letters,16(9):5883-5887
    Sunda WG,Huntsman SA and Harvey GR.1983.Photoreduction of manganese oxides in seawater and its geochemical and biological implications.Nature,301(5897):234-236
    Takahashi Y,Manceau A,Geoffroy N,Marcus MA and Usui A.2007.Chemical and structural control of the partitioning of Co,Ce,and Pb in marine ferromanganese oxides.Geochimica et Cosmochimica Acta,71(4):984-1008
    Thiagarajan N and Lee CTA.2004.Trace-element evidence for the origin of desert varnish by direct aqueous atmospheric deposition.Earth and Planetary Science Letters,224(1-2):131-141
    Walker AS.1996.Deserts:Geology and Resources.Denver,USA:U.S.Dept.of the Interior,U.S.Geological Survey
    Wiechen M,Zaharieva I,Dau H and Kurz P.2012.Layered manganese oxides for water-oxidation:Alkaline earth cations influence catalytic activity in a photosystem II-like fashion.Chemical Science,3(7):2330-2339
    Xu XM,Ding HR,Li Y,Lu AH,Li Y and Wang CQ.2018.Mineralogical characteristics of Mn coatings from different weathering environments in China:Clues on their formation.Mineralogy and Petrology,112(5):671-683
    Zhao QY.1989.Geochemistry of Ocean.Beijing:Geological Publishing House,1-134(in Chinese)
    鲁安怀.2003.无机界矿物天然自净化功能之矿物光催化作用.岩石矿物学杂志,22(4):323-331
    鲁安怀,李艳,王鑫,丁竑瑞,曾翠平,郝瑞霞,王长秋.2013.半导体矿物介导非光合微生物利用光电子新途径.微生物学通报,40(1):190-202
    鲁安怀,李艳,王鑫,丁竑瑞,刘熠,王长秋.2014a.关键带中天然半导体矿物光电子的产生与作用.地学前缘,21(3):256-264
    鲁安怀,王鑫,李艳,丁竑瑞,王长秋,曾翠平,郝瑞霞,杨晓雪.2014b.矿物光电子与地球早期生命起源及演化初探.中国科学(地球科学),44(6):1117-1123
    鲁安怀,李艳,丁竑瑞,王长秋.2018.矿物光电子能量及矿物与微生物协同作用.矿物岩石地球化学通报,37(1):1-15
    赵其渊.1989.海洋地球化学.北京:地质出版社,1-134

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700