用户名: 密码: 验证码:
石笋初始~(234)U/~(238)U值的冰量周期特征及其环境意义——以湖北三宝洞为例
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Ice Volume Cycle Characteristics and the Environmental Significance of the Initial ~(234)U/~(238)U Ratio Inferred from Stalagmites: A case study from Sanbao Cave, Hubei
  • 作者:崔田丰 ; 段福才 ; 张伟宏 ; 董进国 ; 朱丽东
  • 英文作者:CUI TianFeng;DUAN FuCai;ZHANG WeiHong;DONG JinGuo;ZHU LiDong;College of Geography and Environmental Sciences, Zhejiang Normal University;School of Geographic Science, Nantong University;
  • 关键词:石笋 ; 初始~(234)U/~(238)U ; 周期 ; 古气候 ; 三宝洞
  • 英文关键词:stalagmite;;initial ~(234)U/~(238)U;;cycle;;paleoclimate;;Sanbao Cave
  • 中文刊名:沉积学报
  • 英文刊名:Acta Sedimentologica Sinica
  • 机构:浙江师范大学地理与环境科学学院;南通大学地理科学学院;
  • 出版日期:2018-05-22 10:55
  • 出版单位:沉积学报
  • 年:2019
  • 期:02
  • 基金:国家自然科学基金项目(41602181,41602350,41572345)~~
  • 语种:中文;
  • 页:80-87
  • 页数:8
  • CN:62-1038/P
  • ISSN:1000-0550
  • 分类号:P532
摘要
石笋氧同位素记录具有明显的2万年周期,其他记录中广泛存在的10万年周期是否在石笋中有所表现目前还鲜有报道。通过对湖北三宝洞20支石笋的铀同位素数据的分析研究发现,石笋初始~(234)U/~(238)U值在序列连续性较好的640.3~299.6 ka B.P.时间段有强烈的10万年周期特征。在间冰期和冰期时,初始~(234)U/~(238)U值分别呈增大和减小状态。初始~(234)U/~(238)U值的10万年周期与全球冰量、黄土磁化率、黄土平均粒度和大气CO_2变化有良好的对应关系。这些对应关系表明全球冰量、大气CO_2对喀斯特区地球化学元素富集和迁移作用有重要影响。石笋氧同位素的显著岁差周期独立于石笋微量元素、高纬冰量和全球温室气体变化,暗示了太阳辐射变化对中低纬水汽环流的直接影响。石笋初始~(234)U/~(238)U与氧同位素、太阳辐射在冰消期时的对应变化支持北半球太阳辐射能量变化对冰期—间冰期旋回的调控作用。
        Obvious 23 000-year-long cycles have been identified in stalagmite oxygen isotope records, but 100 000-year cycles are also widely recorded in other geological records. Based on the analysis of isotopic data for 20 stalagmites from Sanbao Cave, Hubei, it is found that the initial ~(234)U/~(238)U ratio has a strong cycle of 100 000 years in the period 640.3-299.6 ka B.P. The values of(~(234)U/~(238)U)_0 increases during interglacial periods and decreases in glacial periods. The 100 000-year cycle of(~(234)U/~(238)U)_0 corresponds closely with changes in global ice volume, loess grain size and atmospheric CO_2 concentration. This coherence indicates that the changes of global ice volume and CO_2 concentration had important effects on the enrichment and migration of geochemical elements in karst areas. These observations indicate that the oxygen isotope record for the precession cycle in stalagmites is independent of the influences of high-northern-latitude ice volume and global greenhouse gases, suggesting a direct effect of solar radiation change on low-latitude water circulation. Corresponding changes of(~(234)U/~(238)U)_0, oxygen isotope and insolation in terminations support the hypothesis that the northern hemisphere summer insolation modulate the glacial to interglacial cycle.
引文
[1] Milankovitch M M. Canon of insolation and the ice-age problem[M]. Belgrade: Serbian Academy Special Publication, 1941: 567.
    [2] Imbrie J, Hays J D, Martinson D G, et al. The orbital theory of pleistocene climate: support from a revised chronology of the marine δ18O record[M]//Berger AL, Imbrie J, Hays J, et al. Milankovitch and climate, Part 1. Dordrecht: Reidel Publishing, 1984.
    [3] Martinson D G, Pisias N G, Hays J D, et al. Age dating and the orbital theory of the ice ages: development of a high-resolution 0 to 300,000-year chronostratigraphy[J]. Quaternary Research, 1987, 27(1): 1-29.
    [4] Hays J D, Imbrie J, Shackleton N J. Variations in the Earth's orbit: pacemaker of the ice ages[J]. Science, 1976, 194(4270): 1121-1132.
    [5] Winograd I J, Coplen T B, Landwehr J M, et al. Continuous 500,000-year climate record from vein calcite in Devils Hole, Nevada[J]. Science, 1992, 258(5080): 255-260.
    [6] Dahl-Jensen D, Mosegaard K, Gundestrup N, et al. Past temperatures directly from the Greenland ice sheet[J]. Science, 1998, 282(5387): 268-271.
    [7] Ding Z L, Liu T S, Rutter N W, et al. Ice-volume forcing of East Asian winter monsoon variations in the past 800,000 years[J]. Quaternary Research, 1995, 44(2): 149-159.
    [8] Wang Y J, Cheng H, Edwards R L, et al. A high-resolution absolute-dated late Pleistocene monsoon record from Hulu Cave, China[J]. Science, 2001, 294(5550): 2345-2348.
    [9] Wang Y J, Cheng H, Edwards R L, et al. Millennial-and orbital-scale changes in the East Asian monsoon over the past 224,000 years[J]. Nature, 2008, 451(7182): 1090-1093.
    [10] Cheng H, Edwards R L, Broecker W S, et al. Ice age terminations[J]. Science, 2009, 326(5950): 248-252.
    [11] Yuan D X, Cheng H, Edwards R L, et al. Timing, duration, and transitions of the last interglacial Asian monsoon[J]. Science, 2004, 304(5670): 575-578.
    [12] Cheng H, Edwards R L, Sinha A, et al. The Asian monsoon over the past 640,000 years and ice age terminations[J]. Nature, 2016, 534(7609): 640-646.
    [13] Cai Y J, Fung I Y, Edwards R L, et al. Variability of stalagmite-inferred Indian monsoon precipitation over the past 252,000 y[J]. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(10): 2954-2959.
    [14] Ao H, Dekkers M J, Xiao G Q, et al. Different orbital rhythms in the Asian summer monsoon records from North and South China during the Pleistocene[J]. Global and Planetary Change, 2012, 80-81: 51-60.
    [15] An Z S, Clemens S C, Shen J, et al. Glacial-interglacial Indian summer monsoon dynamics[J]. Science, 2011, 333(6043): 719-723.
    [16] 杨琰,袁道先,程海,等. 洞穴石笋初始234U/238U值变化的古气候记录意义[J]. 地质学报,2008,82(5):692-701. [Yang Yan, Yuan Daoxian, Cheng Hai, et al. Initial 234U/238U variation of stalagmites: implications for paleoclimate reconstruction[J]. Acta Geologica Sinica, 2008, 82(5): 692-701.]
    [17] Spratt R M, Lisiecki L E. A Late Pleistocene sea level stack[J]. Climate of the Past, 2016, 12(4): 1079-1092.
    [18] Sun Y B, Clemens S C, An Z S, et al. Astronomical timescale and palaeoclimatic implication of stacked 3.6-Myr monsoon records from the Chinese Loess Plateau[J]. Quaternary Science Reviews, 2006, 25(1/2): 33-48.
    [19] Lüthi D, Le Floch M, Bereiter B, et al. High-resolution carbon dioxide concentration record 650,000-800,000 years before present[J]. Nature, 2008, 453(7193): 379-382.
    [20] Shen C C, Edwards R L, Cheng H, et al. Uranium and thorium isotopic and concentration measurements by magnetic sector inductively coupled plasma mass spectrometry[J]. Chemical Geology, 2002, 185(3/4): 165-178.
    [21] 董进国,刁伟,孔兴功. 湖北三宝洞石笋238U值变化的古气候意义[J]. 海洋地质与第四纪地质,2013,33(1):129-135. [Dong Jinguo, Diao Wei, Kong Xinggong. Variation in uranium isotopes of stalagmites from Sanbao Cave, Hubei province: implications for palaeoclimate[J]. Marine Geology & Quaternary Geology, 2013, 33(1): 129-135.]
    [22] 董进国. 湖北三宝洞石笋生长速率及其古气候意义[J]. 第四纪研究,2013,33(1):146-154. [Dong Jinguo. The growth and the paleoclimatic significance of stalagmites in Sanbao Cave, Hubei[J]. Quaternary Sciences, 2013, 33(1): 146-154.]
    [23] Kaufman A, Wasserburg G J, Porcelli D, et al. U-Th isotope systematics from the Soreq cave, Israel and climatic correlations[J]. Earth and Planetary Science Letters, 1998, 156(3/4): 141-155.
    [24] Hellstrom J C, McCulloch M T. Multi-proxy constraints on the climatic significance of trace element records from a New Zealand speleothem[J]. Earth and Planetary Science Letters, 2000, 179(2): 287-297.
    [25] Plagnes V, Causse C, Genty D, et al. A discontinuous climatic record from 187 to 74 ka from a speleothem of the Clamouse Cave (south of France)[J]. Earth and Planetary Science Letters, 2002, 201(1): 87-103.
    [26] 况润元,汪永进,张向华,等. 石笋铀同位素组成对土壤环境变化的指示[J]. 科学通报,2002,47(13):1022-1026. [Kuang Runyuan, Wang Yongjin, Zhang Xianghua, et al. Implications for soil environment from uranium isotopes of stalagmites[J]. Chinese Science Bulletin, 2002, 47(19): 1653-1658.]
    [27] Frumkin A, Stein M. The Sahara–East Mediterranean dust and climate connection revealed by strontium and uranium isotopes in a Jerusalem speleothem[J]. Earth and Planetary Science Letters, 2004, 217(3/4): 451-464.
    [28] Zhou J Z, Lundstrom C C, Fouke B, et al. Geochemistry of speleothem records from southern Illinois: development of (234 U)/(238 U) as a proxy for paleoprecipitation[J]. Chemical Geology, 2005, 221(1/2): 1-20.
    [29] 陈琼,陈琳,黄嘉仪,等. 岩溶洞穴次生碳酸盐沉积铀及其同位素组成古气候环境研究进展[J]. 中国岩溶,2015,34(5):479-485. [Chen Qiong, Chen Lin, Huang Jiayi, et al. Progress in the study of paleoclimate reconstruction from speleothem uranium and its isotope[J]. Carsologica Sinica, 2015, 34(5): 479-485.]
    [30] Berger A L. Long-term variations of caloric insolation resulting from the Earth's orbital elements[J]. Quaternary Research, 1978, 9(2): 139-167.
    [31] 谭明. 环流效应:中国季风区石笋氧同位素短尺度变化的气候意义:古气候记录与现代气候研究的一次对话[J]. 第四纪研究,2009,29(5):851-862. [Tan Ming. Circulation effect: Climatic significance of the short term variability of the oxygen isotopes in stalagmites from monsoonal China—Dialogue between paleoclimate records and modern climate research[J]. Quaternary Sciences, 2009, 29(5): 851-862.]

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700