用户名: 密码: 验证码:
辽宁鞍山齐大山铁矿床地球化学特征及地质意义
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Geochemical Characteristics of the Qidashan Iron Deposit in Anshan, Liaoning Province and Its Geological Significance
  • 作者:何保 ; 李莹 ; 滕寿仁 ; 杨仲杰
  • 英文作者:HE Bao;LI Ying;TENG Shou-ren;YANG Zhong-jie;College of Mining Engineering, Liaoning Technical University;Liaoning Survey Academy of Geology and Mineral Resources;
  • 关键词:齐大山铁矿床 ; 地球化学 ; 沉积变质型 ; 成矿物质 ; 沉积环境
  • 英文关键词:Qidashan iron deposit;;geochemistry;;sedimentary-metamorphic type;;ore-forming material;;sedimentary environment
  • 中文刊名:矿物岩石地球化学通报
  • 英文刊名:Bulletin of Mineralogy,Petrology and Geochemistry
  • 机构:辽宁工程技术大学矿业学院;辽宁省地质矿产调查院;
  • 出版日期:2019-01-23 10:20
  • 出版单位:矿物岩石地球化学通报
  • 年:2019
  • 期:02
  • 基金:国家自然科学基金项目(51304114,41672247);; 辽宁省教育厅科学技术研究项目(LJ2017FAL016)
  • 语种:中文;
  • 页:199-208
  • 页数:10
  • CN:52-1102/P
  • ISSN:1007-2802
  • 分类号:P618.31
摘要
为研究辽宁齐大山铁矿床的成矿物质来源及形成环境,选取典型铁矿石进行主量元素、微量元素和稀土元素分析测试。结果显示,铁矿石主要由TFeO和SiO_2组成,其他主量元素及微量元素、稀土元素含量均较低,页岩标准化稀土元素配分曲线呈轻稀土元素相对亏损、重稀土元素相对富集型,具有一定的Eu、Y、La的正异常和弱的Ce异常,以及较高的Y/Ho值。研究表明,齐大山铁矿是由极少碎屑物质加入的化学沉积岩,其成矿物质主要来源于热水和海水的混合作用,是在海底一定缺氧的环境下形成的,矿床是与海相火山沉积有关的前寒武纪火山沉积型铁矿。
        The Qidashan banded iron formation(BIF) is located in the Anshan area of Liaoning Province. In order to constrain the origin of ore-forming material and metallogenic environment, whole rock major and trace elements of typical iron ores and host rocks have been analyzed. The iron ores of this deposit are mainly composed of FeO and SiO_2. Other elements are generally low. Shale-normalized patterns of rare earth elements(REE) demonstrate that the iron ores are characterized by depletion of LREE, enrichment of HREE, apparent positive La-Eu-Y anomalies, negative Ce anomaly and high Y/Ho ratios. Such geochemical features indicate that iron ores of Qidashan were chemical sedimentary which involved with a few clastic components.The ore-forming material mainly originated from both hydrothermal fluids and seawater. The deposit is formed in a hypoxic environment on the sea floor, and is a meta-volcanic sedimentary type iron deposit related to Precambrian marine volcanism.
引文
Alexander B W, Bau M, Andersson P, Dulski P. 2008. Continentally-derived solutes in Shallow Archean seawater: Rare earth element and Nd isotope evidence in iron formation from the 2.9 Ga Pongola Supergroup, South Africa. Geochimica et Cosmochimica Acta, 72(2): 378-394
    Alibo D S, Nozaki Y. 1999. Rare earth elements in seawater: Particle association, shale-normalization, and Ce oxidation. Geochimica et Cosmochimica Acta, 63(3-4): 363-372
    Bau M, Dulski P. 1996. Distribution of yttrium and rare-earth elements in the Penge and kuruman iron-formations, Transvaal supergroup, South Africa. Precambrian Research, 79(1-2): 37-55
    Bau M. 1993. Effects of syn-and post-depositional processes on the rare-earth element distribution in precambrian iron-formations. European Journal of Mineralogy, 5(2): 257-268
    Bau M. 1995. Yttrium and holmium in south pacific seawater: Vertical distribution and possible fractionation mechanisms. Chemie der Erde-Geochemistry, 55(1): 1-15
    Bekker A, Holland H D, Wang P L, Rumble III D, Stein H J, Hannah J L, Coetzee L L, Beukes N J. 2004. Dating the rise of atmospheric oxygen. Nature, 427(6970): 117-120
    Bolhar R, Kamber B S, Moorbath S, Fedo C M, Whitehouse M J. 2004. Characterisation of early archaean chemical sediments by trace element signatures. Earth and Planetary Science Letters, 222(1): 43-60
    Danielson A, M?ller P, Dulski P. 1992. The europium anomalies in banded iron formations and the thermal history of the oceanic crust. Chemical Geology, 97(1-2): 89-100
    Dasgupta H C, Rao V V S, Krishna C. 1999. Chemical environments of deposition of ancient iron-and manganese-rich sediments and cherts. Sedimentary Geology, 125(1-2): 83-98
    Dymek R F, Klein C. 1988. Chemistry, petrology and origin of banded iron-formation lithologies from the 3800 MA isua supracrustal belt, west Greenland. Precambrian Research, 39(4): 247-302
    Frei R, Polat A. 2007. Source heterogeneity for the major components of 3.7 Ga banded iron formations (Isua Greenstone Belt, western Greenland): Tracing the nature of interacting water masses in BIF formation. Earth and Planetary Science Letters, 253(1-2): 266-281
    Gross G A, McLeod C R. 1980. A preliminary assessment of the chemical composition of iron formations in Canada. The Canadian Mineralogist, 18(2): 223-229
    Hamade T, Konhauser K O, Raiswell R, Goldsmith S, Morris, R C. 2003. Using Ge/Si ratios to decouple iron and silica fluxes in Precambrian banded iron formations. Geology, 31(1): 35-38
    Holland H D. 1984. The chemical evolution of the atmosphere and oceans. Princeton, NJ: Princeton University Press, 1-582
    Kato Y, Ohta I, Tsunematsu T, Watanabe Y, Isozaki Y, Maruyama S, Imai N. 1998. Rare earth element variations in mid-archean banded iron formations: Implications for the chemistry of ocean and continent and plate tectonics. Geochimica et Cosmochimica Acta, 62(21-22): 3475-3497
    Kerrich R, Goldfarb R, Groves D, Garwin S. 2000. The geodynamics of world-class gold deposits: Characteristics, space-time distribution, and origins. Society of Economic Geologists Reviews in Economic Geology, 13: 501-551
    Kholodov V N, Butuzova G Y. 2001. Problems of iron and phosphorus geochemistry in the Precambrian. Lithology and Mineral Resources, 36(4): 291-302
    McLennan S M. 1989. Rare earth elements in sedimentary rocks: Influence of provenance and sedimentary processes. Reviews in Mineralogy and Geochemistry, 21(1): 169-200
    Nozaki Y, Zhang J, Amakawa H. 1997. The fractionation between y and ho in the marine environment. Earth and Planetary Science Letters, 148(1-2): 329-340
    Raju P V S. 2009. Petrography and geochemical behaviour of trace element, REE and precious metal signatures of sulphidic banded iron formations from the chikkasiddavanahalli area, chitradurga schist belt, India. Journal of Asian Earth Sciences, 34(5): 663-673
    Song B, Nutman A P, Liu D Y, Wu J S. 1 996. 3800 to 2500 ma crustal evolution in the Anshan area of Liaoning province, northeastern China. Precambrian Research, 78(1-3): 79-94
    Spier C A, de Oliveira S M B, Sial A N, Rios F J. 2007. Geochemistry and genesis of the banded iron formations of the Cauê Formation, Quadrilátero Ferrífero, Minas Gerais, Brazil. Precambrian Research, 152(3-4): 170-206
    Sun S S, McDonough W F. 1989. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. Geological Society, London, Special Publications, 42(1): 313-345
    Taylor R P. 1987. 稀土元素在矿床研究中的应用. 李文达, 译. 北京: 地质出版社, 161-168
    Tribovillard N, Algeo T J, Lyons T, Riboulleau A. 2006. Trace metals as paleoredox and paleoproductivity proxies: An update. Chemical Geology, 232(1-2): 12-32
    兰彩云, 张连昌, 赵太平, 王长乐, 李红中, 周艳艳. 2013. 河南舞阳铁山庙式BIF铁矿的矿物学与地球化学特征及对矿床成因的指示. 岩石学报, 29(7): 2567-2582
    蓝廷广, 范宏瑞, 胡芳芳, 杨奎锋, 郑小礼, 张华东. 2012. 鲁东昌邑古元古代BIF铁矿矿床地球化学特征及矿床成因讨论. 岩石学报, 28(11): 3595-3611
    冷文芳, 王恩德, 武悦, 刘陆山, 付海涛, 王娜. 2015. 辽宁齐大山铁矿元素地球化学特征. 地质与资源, 24(4): 336-340
    李树勋, 冀树楷, 马志红, 贺高品, 田永清, 杨文魁. 1986. 五台山区变质沉积铁矿地质. 长春: 吉林科学技术出版社, 1-299
    李延河, 侯可军, 万德芳, 张增杰, 乐国良. 2010. 前寒武纪条带状硅铁建造的形成机制与地球早期的大气和海洋. 地质学报, 84(9): 1359-1373
    李永峰, 谢克家, 罗正传, 李俊平. 2013. 河南舞阳铁山铁矿床地球化学特征及其环境意义. 地质学报, 87(9): 1377-1398
    辽宁省地质矿产勘查局. 2016. “辽宁鞍山-本溪整装勘查区专业填图与技术应用示范”子项目顺利通过成果报告验收. 沈阳: 辽宁省地质矿产勘查局
    廖鹏程, 吕新彪, 贾启元, 高学鹏, 张帅, 毛晨. 2016. 青海省洪水河铁矿床岩石学、地球化学特征及其成因. 矿物岩石地球化学通报, 35(2): 285-294
    刘敦一. 1991. 中国38亿年古陆壳的发现. 中国地质, (5): 30-
    刘军, 靳淑韵. 2010. 辽宁弓长岭铁矿磁铁富矿的成因研究. 现代地质, 24(1): 80-88
    刘明军, 曾庆栋, 李厚民, 李立兴, 文屹, 姚良德, 高业舜. 2017. 辽宁鞍本地区铁质活化再富集成因富铁矿的成矿时代:齐大山铁矿床辉钼矿Re-Os年龄证据. 矿床地质, 36(1): 237-249
    刘清泉, 李永峰, 罗正传, 谢克家, 黄自力. 2014. 河南舞阳经山寺铁矿床地球化学特征及其地质意义. 矿床地质, 33(4): 697-712
    沙鑫, 陈世强, 何兆祥, 侯克选, 边鹏, 霍永豪, 王金荣, 翟新伟. 2016. 北祁连西段卡瓦铁矿的地球化学特征及其地质意义. 地质与勘探, 52(4): 657-666
    沈其韩, 宋会侠, 杨崇辉, 万渝生. 2011. 山西五台山和冀东迁安地区条带状铁矿的岩石化学特征及其地质意义. 岩石矿物学杂志, 30(2): 161-171
    沈其韩, 宋会侠, 赵子然. 2009. 山东韩旺新太古代条带状铁矿的稀土和微量元素特征. 地球学报, 30(6): 693-699
    沈其韩. 1998. 华北地台早前寒武纪条带状铁英岩地质特征和形成的地质背景. 见: 程裕淇. 华北地台早前寒武纪地质研究论文集. 北京: 地质出版社, 1-30
    万渝生, 刘敦一, 殷小艳, Wilde S A, 谢烈文, 杨岳衡, 周红英, 伍家善. 2007. 鞍山地区铁架山花岗岩及表壳岩的锆石SHRIMP年代学和Hf同位素组成. 岩石学报, 23(2): 241-252
    王守伦, 张瑞华. 1995. 齐大山铁矿黑云变粒岩单锆石年龄及意义. 矿床地质, 14(3): 216-219
    祝朝辉, 刘淑霞, 宋锋, 张宏伟, 谷德敏. 2017. 河南三佛宫铁矿床地球化学特征及其地质意义. 矿物岩石地球化学通报, 36(6): 955-963

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700