用户名: 密码: 验证码:
西藏列廷冈-勒青拉铅锌铁铜钼矿床成矿流体特征:来自流体包裹体及碳氢氧同位素的证据
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Characteristics of Ore-Forming Fluids of Lietinggang-Leqingla Pb-Zn-Fe-Cu-Mo Polymetallic Deposit in Tibetan: Evidence from Fluid Inclusions and Stable Isotope Compositions
  • 作者:马旺 ; 刘英超 ; 杨竹森 ; 李振清 ; 赵晓燕 ; 岳龙龙
  • 英文作者:Ma Wang;Liu Yingchao;Yang Zhusen;Li Zhenqing;Zhao Xiaoyan;Yue Longlong;Institute of Geology,Chinese Academy of Geological Sciences;Institute of Mineral Resources,Chinese Academy of Geological Sciences;
  • 关键词:流体包裹体 ; 碳氢氧同位素 ; 铅锌铁铜钼矿床 ; 列廷冈-勒青拉 ; 西藏 ; 矿床
  • 英文关键词:fluid inclusion;;hydrogen;;oxygen and carbon isotopes;;Pb-Zn-Fe-Cu-Mo polymetallic deposit;;Lietinggang-Leqingla;;Tibet;;deposits
  • 中文刊名:地球科学
  • 英文刊名:Earth Science
  • 机构:中国地质科学院地质研究所;中国地质科学院矿产资源研究所;
  • 出版日期:2019-03-22 15:17
  • 出版单位:地球科学
  • 年:2019
  • 期:06
  • 基金:“深地资源勘查开采”重点专项(No.2016YFC0600306);; 国家自然科学基金(Nos.41773042,41773043,41320104004,41772088);; 中国地质调查局项目(No.DD20160024-02);; 国际地质对比计划(No.IGCP-662)资助
  • 语种:中文;
  • 页:191-207
  • 页数:17
  • CN:42-1874/P
  • ISSN:1000-2383
  • 分类号:P618.2
摘要
列廷冈-勒青拉矿床位于西藏冈底斯北缘多金属成矿带东侧,是该成矿带内一个独特的同时发育Pb、Zn、Fe、Cu、Mo五种元素矿化的典型矽卡岩型矿床.对该矿床成矿流体性质研究有助于解决这种具有不同来源属性的多金属共生矿床的成矿机制等科学问题.基于此,选取与Fe-Cu-Mo矿化和Pb-Zn-Cu矿化密切相关的矽卡岩矿物和脉石矿物,系统开展了流体包裹体和碳氢氧同位素研究,结果显示二者的成矿流体来源相同并经历了相似的演化过程.矽卡岩阶段主要发育富液相包裹体,成矿流体具有高温中高盐度特征.成矿期石英硫化物阶段和成矿后期碳酸盐阶段主要发育富液相包裹体和含子晶的多相包裹体,前者成矿流体温度属于中高温范畴,而盐度分为高盐度和低盐度两类;后者成矿流体温度属于中低温范畴,而盐度同样分为高盐度和低盐度两类,研究表明出现两种盐度截然不同的流体是由于沸腾作用造成的.稳定同位素研究结果显示矽卡岩阶段成矿流体主要源于发生过脱水去气作用的残余岩浆水,石英硫化物阶段和碳酸盐阶段均有大气降水的参与.灰岩地层与正常海相碳酸盐岩相比δ~(18)O明显亏损,表明成矿流体在矿区灰岩地层中大规模运移并发生水岩反应,从而在远端矽卡岩带形成铅锌铜矿化.结合前人及本次研究结果,列廷冈-勒青拉矿床Fe-Cu矿化与Pb-Zn矿化为同一时期岩浆活动的产物,但分别与不同属性的岩浆有关.降温冷却、流体混合作用以及pH值的变化是控制列廷冈-勒青拉矿床金属沉淀的重要因素,而成矿温度和岩浆属性的差异是造成成矿元素在空间上分带的主要原因.
        The Lietinggang-Leqingla deposit developed Pb-Zn-Fe-Cu-Mo five kinds of metals in the same ore district,which is the most typical skarn-type deposit in the north Gangdese polymetallic belt.Studying on the ore fluid property is helpful for us to solve the ore-forming mechanism of this deposit,which is considered to be polymetallic symbiosis deposit with different source attributes.In this study,skarn minerals and gangue minerals closely related to Fe-Cu-Mo and Pb-Zn-Cu mineralization were sampled and a detailed study with regard to fluid inclusion and C-H-O isotopes was conducted,the results show that the fluid source and evolution process of the ore blocks are similar. There are mainly liquid-rich fluid inclusions in the sakrn alteration stage,and fluid in this stage has high temperatures and medium-high salinities.There are mainly liquid-rich fluid inclusion and daughter mineral-bearing fluid inclusions in the quartz-sulfide stage and carbonate stage,fluid in the quartz-sulfide stage has medium-high temperature,and salinity can be divided into high salinity and low salinity.Fluid in the carbonate stage has medium-low temperature,and salinity also can be devided into high salinity and low salinity. Studies show that the presence of two fluids with very different salinity results from boiling of the ore-forming fluid. Stable isotope compositions indicate that the ore-forming fluids were derived from magmatic hydrothermal fluid which had undergone degasification in skarn alteration stage and was mixed with meteoric water in quartz-sulfide stage and carbonate stage. The δ~(18) O is obviously depleted in the limestone strata compare with the normal marine limestone,which indicate that the ore-forming fluid had large-scale migration and water-rock interaction in the whole limestone strata of ore district,thus the Pb-Zn-Cu mineralization is formed in the distal skarn belt. This study,combined with previously published data,Fe-Cu and Pb-Zn mineralization of the Lietinggang-Leqingla deposit are the products of magmatic activities in the same period, but they are related to magma of different attributes. Cooling,fluid mixing and variation of pH of ore-forming fluid resulted in the precipitation of metal of the Lietinggang-Leqingla deposit,the mineralization zoning from the Lietinggang-Leqingla deposit was mostly like controlled by the difference of metallogenic temperature and magmatic attribute.
引文
André-Mayer,A.S.,Leroy,J.,Bailly,L.,et al.,2002.Boiling and Vertical Mineralization Zoning:A Case Study from the Apacheta Low-Sulfidation Epithermal Gold-Silver Deposit,Southern Peru.Mineralium Deposita,37(5):452-464.https://doi.org/10.1007/s00126-001-0247-2.
    Bodnar,R.J.,1983.A Method of Calculating Fluid Inclusion Volumes Based on Vapor Bubble Diameters and P-V-T-X Properties of Inclusion Fluids.Economic Geology,78(3):535-542.https://doi.org/10.2113/gsecongeo.78.3.535
    Bodnar,R.J.,1995.Fluid-Inclusion Evidence for a Magmatic Source for Metals in Porphyry Copper Deposits.Mineralogical Association of Canada Short Course Series,23:139-152.
    Chen,J.,Wang,H.N.,2004.Chemical Geology.Science Press,Beijing(in Chinese).
    Chung,S.L.,Chu,M.F.,Zhang,Y.Q.,et al.,2005.Tibetan Tectonic Evolution Inferred from Spatial and Temporal Variations in Post-Collisional Magmatism.Earth-Science Reviews,68(3-4):173-196.https://doi.org/10.1016/j.earscirev.2004.05.001
    Du,X.,2013.The Study of Lead-Zinc Polymetallic MineraTipical Deposite and Lized Regularity Area Nyainqentanglha Tibet(Dissertation).China University of Geosciences,Beijing(in Chinese with English abstract).
    Drummond,S.E.,Ohmoto,H.,1985.Chemical Evolution and Mineral Deposition in Boiling Hydrothermal Systems.Economic Geology,80(1):126-147.https://doi.org/10.2113/gsecongeo.80.1.126
    Fu,Q.,Huang,K.X.,Zheng,Y.C.,et al.,2015.Ar-Ar Age of Muscovite from Skarn Orebody of the Mengya'a LeadZinc Deposit in Tibet and Its Geodynamic Significance.Acta Geologica Sinica,89(3):569-582(in Chinese with English abstract).
    Fu,Q.,Yang,Z.S.,Zheng,Y.C.,et al.,2013.Zircon U-Pb Ages,Hf Isotope and Geochemistry of Granodiorite in Jialapu Fe Deposit,Tibet.Mineral Deposits,32(3):564-578(in Chinese with English abstract).
    Fu,Q.,Yang,Z.S.,Zheng,Y.C.,et al.,2014.Ar-Ar Age of Phlogopite from the Longmala Copper-Iron-Lead-Zinc Deposit in Tibet and Its Geodynamic Significance.Acta Petrologica et Mineralogica,33(2):283-293(in Chinese with English abstract).
    Giggenbach,W.F.,1992.Isotopic Shifts in Waters from Geothermal and Volcanic Systems along Convergent Plate Boundaries and Their Origin.Earth and Planetary Science Letters,113(4):495-510.https://doi.org/10.1016/0012-821x(92)90127-h
    Harrison,T.M.,Grove,M.,McKeegan,K.D.,et al.,1999.Origin and Episodic Emplacement of the Manaslu Intrusive Complex,Central Himalaya.Journal of Petrology,40(1):3-19.
    Hedenquist,J.W.,Henley,R.W.,1985.Hydrothermal Eruptions in the Waiotapu Geothermal System,New Zealand;Their Origin,Associated Breccias,and Relation to Precious Metal Mineralization.Economic Geology,80(6):1640-1668.https://doi.org/10.2113/gsecongeo.80.6.1640
    Hou,Z.Q.,Duan,L.F.,Lu,Y.J.,et al.,2015.Lithospheric Architecture of the Lhasa Terrane and Its Control on Ore Deposits in the Himalayan-Tibetan Orogen.Economic Geology,110(6):1541-1575.https://doi.org/10.2113/econgeo.110.6.1541
    Hou,Z.Q.,Pan,G.T.,Wang,A.J.,et al.,2006b.Metallogenesis in Tibetan Collisional Orogenic Belt:II.Mineralization in Late-CollisionalTransformation Setting.Mineral Deposits,25(5):521-543(in Chinese with English abstract).
    Hou,Z.Q.,Qu,X.M.,Yang,Z.S.,et al.,2006c.Metallogenesis in Tibetan Collisional Orogenic Belt:Ⅲ.Mineralization in Post-Collisional Extension Setting.Mineral Deposits,25(6):629-651(in Chinese with English abstract).
    Hou,Z.Q.,Yang,Z.S.,Xu,W.Y.,et al.,2006a.Metallogenesis in Tibetan Collisional Orogenic Belt:I.Mineralization in Main Collisional Orogenic Setting.Mineral Deposits,25(4):337-358(in Chinese with English abstract).
    Huang,K.X.,Zheng,Y.C.,Zhang,S.,et al.,2012.LA-ICP-MS Zircon U-Pb Dating of Two Types of Porphyry in the Yaguila Mining Area,Tibet.Acta Petrologica et Mineralogica,31(3):348-360(in Chinese with English abstract).
    Ji,X.H.,Meng,X.J.,Yang,Z.S.,et al.,2014.The Ar-Ar Geochronology of Sericite from the Cryptoexplosive Breccia Type Pb-Zn Deposit in Narusongduo,Tibet and Its Geological Significance.Geology and Exploration,50(2):281-290(in Chinese with English abstract).
    Landtwing,M.,Pettke,T.,Halter,W.,et al.,2005.Copper Deposition during Quartz Dissolution by Cooling Magmatic-Hydrothermal Fluids:The Bingham Porphyry.Earth and Planetary Science Letters,235(1-2):229-243.https://doi.org/10.1016/j.epsl.2005.02.046
    Li,X.F.,Wang,C.Z.,Mao,W.,et al.,2014.The Fault-Controlled Skarn W-Mo Polymetallic Mineralization during the Main India-Eurasia Collision:Example from Hahaigang Deposit of Gangdese Metallogenic Belt of Tibet.Ore Geology Reviews,58:27-40.https://doi.org/10.1016/j.oregeorev.2013.10.006
    Li,Y.X.,Li,G.M.,Xie,Y.L.,et al.,2018.Properties and Evolution Path of Ore-Forming Fluid in Qiagong Polymetallic Deposit of Middle Gangdese in Tibet,China.Earth Science,43(8):2684-2700(in Chinese with English abstract).
    Liu,J.J.,He,M.Q.,Li,Z.M.,2004.Oxygen and Carbon Isotopic Geochemistry of Baiyangping Silver-Copper Polymetallic Ore Concentration Area in Lanping Basin of Yunnan Province and Its Significance.Mineral Deposits,23(1):1-10(in Chinese with English abstract).
    Lu,H.Z.,Fan,H.R.,Ni,P.,et al.,2004.Fluid Inclusion.Science Press,Beijing(in Chinese).
    Ma,W.,Liu,Y.C.,Yang,Z.S.,et al.,2017.Alteration,Mineralization,and Genesis of the Lietinggang-Leqingla Pb-ZnFe-Cu-Mo Skarn Deposit,Tibet,China.Ore Geology Reviews,90:897-912.https://doi.org/10.1016/j.oregeorev.2017.04.034
    Meng,X.J.,Hou,Z.Q.,Ye,P.S.,et al.,2007.Characteristics and Ore Potentiality of Gangdese Silver-Polymetallic Mineralization Belt in Tibet.Mineral Deposits,26(2):153-162(in Chinese with English abstract).
    Mo,X.X.,Niu,Y.L.,Dong,G.C.,et al.,2008.Contribution of Syncollisional Felsic Magmatism to Continental Crust Growth:A Case Study of the Paleogene Linzizong Volcanic Succession in Southern Tibet.Chemical Geology,250(1-4):49-67.https://doi.org/10.1016/j.chemgeo.2008.02.003
    Mo,X.X.,Zhao,Z.D.,Deng,J.F.,et al.,2003.Response of Volcanism to the India-Asia Collision.Earth Science Frontiers,10(3):135-148(in Chinese with English abstract).
    Ohmoto,H.,1972.Systematics of Sulfur and Carbon Isotopes in Hydrothermal Ore Deposits.Economic Geology,67(5):551-578.https://doi.org/10.2113/gsecongeo.67.5.551
    Pearce,J.A.,Deng,W.M.,1988.The Ophiolites of the Tibetan Geotraverses,Lhasa to Golmud(1985)and Lhasa to Kathmandu(1986).Philosophical Transactions of the Royal Society A:Mathematical,Physicaland Engineering Sciences,327(1594):215-238.https://doi.org/10.1098/rsta.1988.0127
    Schwinn,G.,Wagner,T.,Baatartsogt,B.,et al.,2006.Quantification of Mixing Processes in Ore-Forming Hydrothermal Systems by Combination of Stable Isotope and Fluid Inclusion Analyses.Geochimica et Cosmochimica Acta,70(4):965-982.
    Seward,T.M.,Barnes,H.L.,1997.Metal Transport by Hydrothermal Ore Fluids.Geochemistry of Hydrothermal Ore Deposits,3:435-486.
    Shimizu,M.,Iiyama,J.T.,1982.Zinc-Lead Skarn Deposits of the Nakatatsu Mine,Central Japan.Economic Geology,77(4):1000-1012.https://doi.org/10.2113/gsecongeo.77.4.1000
    Shmulovich,K.I.,Landwehr,D.,Simon,K.,et al.,1999.Stable Isotope Fractionation between Liquid and Vapour in Water-Salt Systems up to 600°C.Chemical Geology,157(3-4):343-354.
    Soloviev,S.G.,2011.Geology,Mineralization,and Fluid Inclusion Characteristics of the Kensu W-Mo Skarn and MoW-Cu-Au Alkalic Porphyry Deposit,Tien Shan,Kyrgyzstan.Economic Geology,106(2):193-222.https://doi.org/10.2113/econgeo.106.2.193
    Tang,J.X.,Duo,J.,Liu,H.F.,et al.,2012.Minerogenetic Series of Ore Deposits in the East Part of the Gangdise Metallogenic Belt.Acta Geoscientica Sinica,33(4):393-410(in Chinese with English abstract).
    Taylor,H.P.,1974.The Application of Oxygen and Hydrogen Isotope Studies to Problems of Hydrothermal Alteration and Ore Deposition.Economic Geology,69(6):843-883.https://doi.org/10.2113/gsecongeo.69.6.843
    Taylor,B.E.,1986.Magmatic Volatiles;Isotopic Variation of C,H,and S.Reviews in Mineralogy and Geochemistry,16(1):185-225.
    Veizer,J.,Holser,W.T.,Wilgus,C.K.,1980.Correlation of13C/12C and34S/32S Secular Variation.Geochim.Cosmochim.Acta,44:579-588.
    Wang,J.,Liu,T.C.,Yin,G.,2000.Characteristics of Isotope Distribution in Precipitation in the Middle-Lower Reaches of Yarlung Zangbo Rivers.Geology-Geochemistry,28(1):63-67.
    Williams-Jones,A.E.,Samson,I.M.,Ault,K.M.,et al.,2010.The Genesis of Distal Zinc Skarns:Evidence from the Mochito Deposit,Honduras.Economic Geology,105(8):1411-1440.
    Yin,A.,Harrison,T.M.,2000.Geologic Evolution of the Himalayan-Tibetan Orogen.Annual Review of Earth and Planetary Sciences,28(1):211-280.https://doi.org/10.1146/annurev.earth.28.1.211
    Yu,Y.S.,Yang,Z.S.,Duo,J.,et al.,2011.Age and Petrogenesis of Magmatic Rocks from Jiaduobule Skarn Fe-Cu Deposit in Tibet:From Zircon SHRIMP U-Pb Dating,Hf Isotope and REE.Mineral Deposits,30(3):420-434(in Chinese with English abstract).
    Zhang,A.P.,Zheng,Y.C.,Xu,B.,et al.,2019.Metallogeny of the Lietinggang-Leqingla Fe-Cu-(Mo)-Pb-Zn Polymetallic Deposit,Evidence from Geochronology,Petrogenesis,and Magmatic Oxidation State,Lhasa Terrane.Ore Geology Reviews,106:318-339.https://doi.org/10.1016/j.oregeorev.2019.02.004
    Zhao,J.X.,Qin,K.Z.,Li,G.M.,et al.,2014.Collision-Related Genesis of the Sharang Porphyry Molybdenum Deposit,Tibet:Evidence from Zircon U-Pb Ages,Re-Os Ages and Lu-Hf Isotopes.Ore Geology Reviews,56:312-326.https://doi.org/10.1016/j.oregeorev.2013.06.005
    Zheng,Y.C.,Fu,Q.,Hou,Z.Q.,et al.,2015.Metallogeny of the Northeastern Gangdese Pb-Zn-Ag-Fe-Mo-WPolymetallic Belt in the Lhasa Terrane,Southern Tibet.Ore Geology Reviews,70:510-532.https://doi.org/10.1016/j.oregeorev.2015.04.004
    Zheng,Y.Y.,Ci,Q.,Wu,S.,et al.,2017.The Discovery and Significance of Rongma Porphyry Mo Deposit in the Banggong-Nujiang Metallogenic Belt,Tibet.Earth Science,42(9):1141-1453(in Chinese with English abstract).
    Zhu,D.C.,Mo,X.X.,Zhao,Z.D.,et al.,2010.Presence of Permian Extension-and Arc-Type Magmatism in Southern Tibet:Paleogeographic Implications.Geological Society of America Bulletin,122(7-8):979-993.https://doi.org/10.1130/b30062.1
    Zhu,D.C.,Wang,Q.,Cawood,P.A.,et al.,2017.Raising the Gangdese Mountains in Southern Tibet.Journal of Geophysical Research:Solid Earth,122(1):214-223.
    Zhu,D.C.,Zhao,Z.D.,Niu,Y.L.,et al.,2011.The Lhasa Terrane,Record of a Microcontinent and Its Histories of Drift and Growth.Earth and Planetary Science Letters,301(1-2):241-255.
    陈骏,王鹤年,2004.地球化学.北京:科学出版社.
    杜欣,2013.西藏念青唐古拉地区铅锌多金属矿成因类型与成矿规律研究(博士学位论文).北京:中国地质大学.
    付强,黄克贤,郑远川,等,2015.西藏蒙亚啊铅锌矿床矽卡岩型矿体白云母Ar-Ar年代学研究及其地球动力学意义.地质学报,89(3):569-582.
    付强,杨竹森,郑远川,等,2013.加拉普铁矿区花岗闪长岩锆石U-Pb年龄、Hf同位素及地球化学研究.矿床地质,32(3):564-578.
    付强,杨竹森,郑远川,等,2014.西藏龙马拉Cu-Fe-Pb-Zn多金属矿床金云母Ar-Ar定年及其地球动力学意义.岩石矿物学杂志,33(2):283-293.
    侯增谦,潘桂棠,王安建,等,2006b.青藏高原碰撞造山带:Ⅱ.晚碰撞转换成矿作用.矿床地质,25(5):521-543.
    侯增谦,曲晓明,杨竹森,等,2006c.青藏高原碰撞造山带:Ⅲ.后碰撞伸展成矿作用.矿床地质,25(6):629-651.
    侯增谦,杨竹森,徐文艺,等,2006a.青藏高原碰撞造山带:I.主碰撞造山成矿作用.矿床地质,25(4):337-358.
    黄克贤,郑远川,张松,等,2012.西藏亚贵拉矿区两期岩体LA-ICP-MS锆石U-Pb定年及地质意义.岩石矿物学杂志,31(3):348-360.
    纪现华,孟祥金,杨竹森,等,2014.西藏纳如松多隐爆角砾岩型铅锌矿床绢云母Ar-Ar定年及其地质意义.地质与勘探,50(2):281-290.
    李应栩,李光明,谢玉玲,等,2018.西藏冈底斯中段恰功多金属矿床成矿流体性质与演化.地球科学,43(8):2684-2700.
    刘家军,何明勤,李志明,等,2004.云南白秧坪银铜多金属矿集区碳氧同位素组成及其意义.矿床地质,23(1):1-10.
    卢焕章,范宏瑞,倪培,等,2004.流体包裹体.北京:科学出版社.
    孟祥金,侯增谦,叶培盛,等,2007.西藏冈底斯银多金属矿化带的基本特征与成矿远景分析.矿床地质,26(2):153-162.
    莫宣学,赵志丹,邓晋福,等,2003.印度-亚洲大陆主碰撞过程的火山作用响应.地学前缘,10(3):135-148.
    唐菊兴,多吉,刘鸿飞,等,2012.冈底斯成矿带东段矿床成矿系列及找矿突破的关键问题研究.地球学报,33(4):393-410.
    于玉帅,杨竹森,多吉,等,2011.西藏加多捕勒铁铜矿成矿岩体时代与成因:锆石U-Pb年龄、Hf同位素与稀土元素证据.矿床地质,30(3):420-434.
    郑有业,次琼,吴松,等,2017.西藏班公湖-怒江成矿带荣嘎斑岩型钼矿床的发现及意义.地球科学,42(9):1441-1453.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700