用户名: 密码: 验证码:
Petrology and Sr-Nd isotope systematics of the Ahobil kimberlite(Pipe-16)from the Wajrakarur field, Eastern Dharwar craton, southern India
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Petrology and Sr-Nd isotope systematics of the Ahobil kimberlite(Pipe-16)from the Wajrakarur field, Eastern Dharwar craton, southern India
  • 作者:Abhinay ; Sharma ; Alok ; Kumar ; Praveer ; Pankaj ; Dinesh ; Pandit ; Ramananda ; Chakrabarti ; N.V.Chalapathi ; Rao
  • 英文作者:Abhinay Sharma;Alok Kumar;Praveer Pankaj;Dinesh Pandit;Ramananda Chakrabarti;N.V.Chalapathi Rao;EPMA and SEM Laboratories, Department of Geology, Banaras Hindu University;Centre for Earth Sciences, Indian Institute of Science;
  • 英文关键词:Petrology;;Isotopes;;Kimberlite;;Wajrakarur;;Dharwar craton;;India
  • 中文刊名:Geoscience Frontiers
  • 英文刊名:地学前缘(英文版)
  • 机构:EPMA and SEM Laboratories, Department of Geology, Banaras Hindu University;Centre for Earth Sciences, Indian Institute of Science;
  • 出版日期:2019-05-15
  • 出版单位:Geoscience Frontiers
  • 年:2019
  • 期:03
  • 基金:New Delhi sanctioned a major research project(IR/S4/ESF-18/2011 dated 12.11.2013)to NVCR which made this research possible;; DST-SERB for financial assistance in the form of a research scientist. AS acknowledges CSIR for awarding JRF(NET)
  • 语种:英文;
  • 页:368-387
  • 页数:20
  • CN:11-5920/P
  • ISSN:1674-9871
  • 分类号:P588.1
摘要
Detailed mineralogical, bulk-rock geochemical and Sr-Nd isotopic data for the recently discovered Ahobil kimberlite(Pipe-16) from the Wajrakarur kimberlite field(WKF), Eastern Dharwar craton(EDC),southern India, are presented. Two generations of compositionally distinct olivine, Ti-poor phlogopite showing orangeitic evolutionary trends, spinel displaying magmatic trend-1, abundant perovskite, Tirich hydrogarnet, calcite and serpentine are the various mineral constituents. On the basis of(i) liquidus mineral composition,(ii) bulk-rock chemistry, and(iii) Sr-Nd isotopic composition, we show that Ahobil kimberlite shares several characteristic features of archetypal kimberlites than orangeites and lamproites. Geochemical modelling indicate Ahobil kimberlite magma derivation from small-degree melting of a carbonated peridotite source having higher Gd/Yb and lower La/Sm in contrast to those of orangeites from the Eastern Dharwar and Bastar cratons of Indian shield. The T_(Dm) Nd model age(~2.0 Ga) of the Ahobil kimberlite is(i) significantly older than those(1.5~1.3 Ga) reported for Wajrakarur and Narayanpet kimberlites of EDC,(ii) indistinguishable from those of the Mesoproterozoic EDC lamproites,and(iii) strikingly coincides with the timing of the amalgamation of the Columbia supercontinent. High bulk-rock Fe-Ti contents and wide variation in oxygen fugacity fO_2, as inferred from perovskite oxybarometry, suggest non-prospective nature of the Ahobil kimberlite for diamond.
        Detailed mineralogical, bulk-rock geochemical and Sr-Nd isotopic data for the recently discovered Ahobil kimberlite(Pipe-16) from the Wajrakarur kimberlite field(WKF), Eastern Dharwar craton(EDC),southern India, are presented. Two generations of compositionally distinct olivine, Ti-poor phlogopite showing orangeitic evolutionary trends, spinel displaying magmatic trend-1, abundant perovskite, Tirich hydrogarnet, calcite and serpentine are the various mineral constituents. On the basis of(i) liquidus mineral composition,(ii) bulk-rock chemistry, and(iii) Sr-Nd isotopic composition, we show that Ahobil kimberlite shares several characteristic features of archetypal kimberlites than orangeites and lamproites. Geochemical modelling indicate Ahobil kimberlite magma derivation from small-degree melting of a carbonated peridotite source having higher Gd/Yb and lower La/Sm in contrast to those of orangeites from the Eastern Dharwar and Bastar cratons of Indian shield. The T_(Dm) Nd model age(~2.0 Ga) of the Ahobil kimberlite is(i) significantly older than those(1.5~1.3 Ga) reported for Wajrakarur and Narayanpet kimberlites of EDC,(ii) indistinguishable from those of the Mesoproterozoic EDC lamproites,and(iii) strikingly coincides with the timing of the amalgamation of the Columbia supercontinent. High bulk-rock Fe-Ti contents and wide variation in oxygen fugacity fO_2, as inferred from perovskite oxybarometry, suggest non-prospective nature of the Ahobil kimberlite for diamond.
引文
Afanasyev, A.A., Melnik, O., Porritt, L, Schumacher, J.C., Sparks, R.S.J., 2014. Hydrothermal alteration of kimberlite by convective flows of external water. Contributions to Mineralogy and Petrology 168,1038.
    Arndt, N.T., Guitreau, M., Boullier.A.-M., Le Roex, A., Tommasi, A., Cordier, P.,Sobolev, A., 2010. Olivine, and the origin of kimberlite. Journal of Petrology 51,573-602.
    Aulbach, S., Sun, J., Tappe, S., Hofer, H.,E., Gerdes, A., 2017. Volatile-rich metasomatism in the cratonic mantle beneath SW Greenland:link to kimberlites and mid-lithospheric discontinuities. Journal of Petrology 58(12), 2311-2338.
    Bailey, D.G., Lupulescu, M.V., 2015. Spatial, temporal, mineralogical, and compositional variations in Mesozoic kimberlitic magmatism in Newyork State. Lithos212-215, 298-310.
    Banerjee, A., Chakrabarti, R., Mandal, S., 2016. Geochemical anatomy of a spheroidally weathered diabase. Chemical Geology 440,124-138.
    Beard, A.D., Downes, H., Hegner, E., Sablukov, S.M., 2000. Geochemistry and mineralogy of kimberlites from the Arkhangelsk Region, NW Russia:evidence for transitional kimberlite magma types. Lithos 51, 47-73.
    Becker, M., Roex, A.P.LE., 2006. Geochemistry of south African on-and off-craton,group I and groupⅡkimberlites:petrogenesis and source region evolution.Journal of Petrology 47, 673-703.
    Bellis, A., Canil, D., 2007. Ferric iron in CaTiO_3 perovskite as an oxygen barometer for kimberlitic magmas I:Experimental calibration. Journal of Petrology 48,219-230.
    Birkett, T.C., 2008. First-row transition elements, Y and Ga in kimberlites and lamproite:applications to diamond prospectivity. The Canadian Mineralogist46.1269-1282.
    Boyd, F.R., Pearson, D.G., Hoal, K.O., Hoal, B.G., Nixon, P.H., Kingston, M.J.,Mertzman, S.A., 2004. Garnet Iherzolites from Louwrensia, Namibia:bulk composition and P/T relations. Lithos 77, 573-592.
    Brey, G.P., Bulatov, V.K., Girnis, A.V., Lahaye, Y., 2008. Experimental melting of carbonated peridotite at 6-10 GPa. Journal of Petrology 49. 797-821.
    Brigatti, M.F., Medici, L, Saccani, E., Vaccaro, C., 1996. Crystal chemistry and petrologic significance of Fe~(3+)-rich phlogopite from the Tapira carbonatite complex, Brazil. American Mineralogist 81, 913-927.
    Brod, J.A., Gaspar, J.C., de Araǘjo, D.P., Gibson, S.A., Thompson, R.N., JunqueiraBrod, T.C., 2001. Phlogopite and tetra-ferriphlogopite from Brazilian carbonatite complexes:petrogenetic constraints and implications for mineral-chemistry systematics. Journal of Asian Earth Sciences 19, 265-296.
    Canil, D., Bellis, A.J., 2007. Ferric iron in CaTiO_3 perovskite as an oxygen barometer for kimberlite magmasⅡ:applications. Journal of Petrology 48, 231-252.
    Cas, R., Porritt, L., Pittari, A., Hayman, P., 2008. A new approach to kimberlite facies terminology using a revised general approach to the nomenclature of all volcanic rocks and deposits:descriptive to genetic. Journal of Volcanology and Geothermal Research 174, 226-240.
    Chakhmouradian, A.R., Reguir, E.P., Kamenetsky, V.S., Sharygin, V.V., Golovin, A.V.,2013. Trace-element partitioning in perovskite:implications for the geochemistry of kimberlites and other mantle-derived undersaturated rocks. Chemical Geology 353,112-131.
    Chakmouradian, A.R., Mitchell, R.H., 2000. Occurrence, alteration patterns and compositional variation of perovskite in kimberlites. The Canadian Mineralogist38, 975-994.
    Chakrabarti, R., Basu, A.R., Paul, D.K., 2007. Nd-Hf-Sr-Pb isotopes and trace element geochemistry of Proterozoic lamproites from southern India:subducted komatiite in the source. Chemical Geology 236, 291-302.
    Chalapathi Rao, N.V., Dongre, A.N., 2009. Mineralogy and geochemistry of kimberlites NK2 and KK6, Narayanpet kimberlite field, Eastern Dharwar craton,Southern India:evidence for a transitional kimberlite signature. The Canadian Mineralogist 47,1117-1135.
    Chalapathi Rao, N.V., Srivastava. R.K., 2009. Petrology and geochemistry of diamondiferous Mesoproterozoic kimberlites from Wajrakarur kimberlite field, Eastern Dharwar craton, southern India:genesis and constraints on mantle source regions. Contributions to Mineralogy and Petrology 157,245-265.
    Chalapathi Rao, N.V., Gibson, S.A., Pyle, D.M., Dickin, A.P., 2004. Petrogenesis of proterozoic lamproites and kimberlites from the Cuddapah basin and Dharwar craton. southern India. Journal of Petrology 45, 907-948.
    Chalapathi Rao, N.V., Kamde, G., Kale, H.S., Dongre, A., 2010. Petrogenesis of Mesoproterozoic lamproites from the Krishna Valley, Eastern Dharwar Craton,Southern India. Lithos 177,103-130.
    Chalapathi Rao, N.V., Lehmann, B., Mainkar, D., Belyatsky, B., 2011. Petrogenesis of the end-Cretaceous diamondiferous Behradih orangeite pipe:implication for mantle plume-lithosphere interaction in the Bastar craton, Central India.Contributions to Mineralogy and Petrology 161, 721-742.
    Chalapathi Rao, N.V., Paton, C., Lehmann, B., 2012. Origin and diamond prospectivity of mesoproteroic kimberlites from Narayanpet field, eastern Dharwar craton,southern India:insights from groundmass mineralogy, bulk chemistry and pervoskite. Geological Journal 47,186-212.
    Chalapathi Rao, N.V., Wu, F.Y., Mitchell, R.H., Li, LQ., Lehmann, B., 2013a. Mesoproterozoic U-Pb ages, trace element and Sr-Nd isotopic composition of perovskite from kimberlites of the Eastern Dharwar craton, southern India:distinct mantle sources and a widespread 1.1 Ga tectono-magmatic event.Chemical Geology 353,48-64.
    Chalapathi Rao, N.V., Creaser, R.A., Lehmann, B., Panwar, B.K., 2013b. Re-Os isotope study of indian kimberlites and lamproites:implication for mantle source regions and cratonic evolution. Chemical Geology 353, 36-47.
    Chalapathi Rao, N.V., Lehmann, B., Panwar, B.K., Kumar, A., Mainkar, D., 2014.Petrogenesis of crater-facies tokapal kimberlite, Indravati basin, Central India.Geoscience Frontiers 5, 781-790.
    Chalapathi Rao, N.V., Dongre, A., Wu, F.-Y., Lehmann, B., 2016. A Late Cretaceous(ca.90Ma)kimberlite event in southern India:implication for sub-continental lithospheric mantle evolution and diamond exploration. Gondwana Research35, 378-389.
    Clement, C.R., 1982. A Comparative Geological Study of Some Major Kimberlite Pipes in Northern Cape and Orange Free State(Ph.D. thesis). University of Cape,Town.
    Coe, N., Le Roex, A.P., Gurney, J., Pearson, G., Nowell, G., 2008. Petrogenesis of the Swartruggens and Star GroupⅡkimberlite dyke swarms, South Africa:constraints from whole rock geochemistry. Contributions to Mineralogy and Petrology 156, 627-652.
    Collerson, K.D., Williams, Q., Ewart, A.E., Murphy, D.T., 2010. Origin of HIMU and EM-1 domains sampled by ocean island basalts, kimberlites and carbonatites:the role of CO_2-fluxed lower mantle melting in thermochemical upwellings.Physics of the Earth and Planetary Interiors 181,112-131.
    Currie, C.A., Beaumont, C., 2011. Are diamond-bearing Cretaceous kimberlites related to low-angle subduction beneath western North America? Earth and Planetary Science Letters 303, 59-70.
    Das, J.N., Korakoppa, M.M., Fareeduddin, S.S., Srivastava, J.K., Gera, N.L, 2013. Tuffisitic kimberlite from eastern dharwar craton, undraldoddi area, Raichur district, Karnataka, India. In:Pearson, D.G., Grutter, H.S., Harris, J.W.,Kjarsgaard, BA, O'Brien, H., Chalapathi Rao, N.V., Sparks, S.(Eds.), Proceeding of10th International Kimberlite Conference, vol. 2. Geological Society of India,Bangalore, pp. 109-128.
    Dasgupta, R., Hirschmann, M.M., McDonough, W.F., Spiegelman, M., Withers, A.C.,2009. Trace element partitioning between garnet Iherzolite and carbonatite at6.6 and 8.6 GPa with applications to the geochemistry of the mantle and of mantle-derived melts. Chemical Geology 262, 57-77.
    Dawson, J.B., Smith, J.V., 1977. The MARID(mica-amphibole-rutile-ilmenitediopside)suite of xenoliths in kimberlite. Geochimica et Cosmochimica Acta41, 309-323.
    De Hoog,J.C.M.. Gall, L, Cornell, D.H., 2010. Trace-element geochemistry of mantle olivine and application to mantle petrogenesis and geothermobarometry.Chemical Geology 270,196-215.
    Dongre, A.N., Viljoen, K.S., Chalapathi Rao, N.V., Gucsik, A., 2016. Origin of Ti-rich garnets in the groundmass of Wajrakarur field kimberlites, southern India:insights from EPMA and Raman spectroscopy. Mineralogy and Petrology 110,295-300.
    Dongre, A.N., Chalapathi Rao, N.V., Viljoen, K.S., Lehmann, B., 2017. Petrology,genesis and geodynamic implication of the mesoproterozoic-late cretaceous Timmasamudram kimberlite cluster, Wajrakarur field, eastern dharwar craton,southern India. Geoscience Frontiers 8, 541-553.
    Donnelly, C.L, Griffin, W.L, O'Reilly, S.Y., Pearson, N.J., Shee, S.R., 2011. The kimberlites and related rocks of the Kuruman kimberlite Province, Kaapvaal craton,South Africa. Contributions to Mineralogy and Petrology 161, 351-371.
    Donnelly, C.L, Griffin, W.L, Yang, J.-H., O'Reilly, S.Y., Li, Q,-L. Pearson, N.J., Li, X.-H.,2012. In situ U-Pb dating and Sr-Nd isotopic analysis of perovskite:constraints on the age and petrogenesis of the Kuruman kimberlite province, Kaapvaal craton, South Africa. Journal of Petrology 53, 2497-2522.
    Evenssen, N.M., Hamilton, P.J., O'Nions, R.K., 1978. Rare earth abundances in chondritic meteorites. Geochimica et Cosmochimica Acta 42,1199-1212.
    Fesq, H.W., Kable, E.J.D., Gurney, J.J., 1975. Aspects of the geochemistry of kimberlites from the Premier mine, and other selected South African occurrences with particular reference to the rare earth elements. Physics and Chemistry of the Earth 9, 687-707.
    Foley, S.F., Musselwhite, D.S., van der Laan, S.R., 1999. Melt compositions from ultramafic vein assemblages in the lithospheric mantle:a comparison of cratonic and non-cratonic settings. In:Gurney, J.J., et al.(Eds.), J.B. Dawson Volume. Red Roof Design, Cape Town, pp. 238-246.
    Foley, S.F., Yaxley, G.M., Rosenthal, A., Buhre, S., Kiseeva, E.S., Rapp, R.P., Jacob, D.E.,2009. The composition of near-solidus melts of peridotite in the presence of CO_2 and H_2O between 40 and 60 kbar. Lithos 112, 274-283.
    Francis, D., Patterson, M., 2009. Kimberlites and aillikites as probes of the continental lithospheric mantle. Lithos 109, 72-80.
    Francis, D., Patterson, M., 2010. Reply to the Discussion by Mitchell and Tappe on”kimberlites and alikites as probes of the continental lithospheric mantle".Lithos 115, 293-295.
    Friend, C.R.L., Nutman, A.P., 1991. SHRIMP U-Pb geochronology of the Closepet granite and peninsular gneisses, Karnataka, South of India. Journal of the Geological Society of India 38, 357-368.
    Gale, G., Dabek, L, Fedikow, M., 1997. The application of rare earth element analyses in the exploration of volcanogeneic massive sulphide deposits. Exploration Minning Geology 3, 232-257.
    Ganguly, J., Bhattacharya, P.K., 1987. Xenoliths in Proterozoic kimberlites from southern India:petrology and geophysical implications. In:Nixon, P.H.(Ed.),Mantle Xenoliths. John Wiley and Sons, pp. 249-265.
    Geological Survey of India, 2018. Diamond fields of southern India. Geological Survey of India Bulletin Series A 68, pp. 995.
    Gibson, SA, Thompson, R.N., Leonardos, O.H., Dickin, A.P., Mitchell, J.G., 1995. The late cretaceous impact of the trindade mantle plume:evidence from large-volume,mafic, potassic magmatism in SE Brazil. Journal of Petrology 36,189-229.
    Giuliani, A., Phillips, D., Maas, R., Woodhead, J.D., Kendrick, M.A., Greig, A.,Armstrong, R.A., Chew, D., Kamenetsky, V.S., Fiorentini, M.L, 2014. LIMA U-Pb ages link lithospheric mantle metasomatism to Karoo magmatism beneath the Kimberley region, South Africa. Earth and Planetary Science Letters 401,132-147.
    Gopalan, K., Kumar, A., 2008. Phlogopite K-Ca dating of Narayanpet kimberlites,south India:implications to the discordance between their Rb-Sr and Ar/Ar ages. Precambrian Research 167, 377-382.
    Griffin, W.L, Pearson, N.J., Belousova, E., Jackson, S.E., O'Reilly, S.Y., van Achterberg, E., Shee, S.R., 2000. The Hf isotope composition of cratonic mantle:LAM-MC-ICPMS analysis of zircon megacrysts in kimberlites. Geochimica et Cosmochimica Acta 64,133-147.
    Griffin, W.L, Batumike, J.M., Greau, Y., Pearson, N.J., Shee, S.R., O'Reilly, S.Y., 2014.Emplacement ages and sources of kimberlites and related rocks in southern Africa:U-Pb ages and Sr-Nd isotopes of groundmass perovskite. Contributions to Mineralogy and Petrology 168,1032.
    Griitter, H.S., Gurney, J.J., Menzies, A.H., Winter, F., 2004. An updated classification scheme for mantle-derived garnet, for use by diamond explorers. Lithos 77,841-857.
    Guarino, V., Wu, F.-Y., Lustrino, M., Melluso, L, Brotzu, P., Gomes, C. de B., Ruberti, E.,Tassinari, C.C.G., Svisero, D.P., 2013. U-Pb ages, Sr-Nd-isotope geochemistry,and petrogenesis of kimberlites, kamafugites and phlogopite-picrites of the Alto Paranaiba Igneous Province, Brazil. Chemical Geology 353, 65-82.
    Gudfinnsson, G.H., Presnall, D.C., 2005. Continuous gradations among primary carbonatitic, kimberlitic, melilititic, basaltic, picritic, and komatiitic melts in equilibrium with garnet Iherzolite at 3-8 GPa. Journal of Petrology 46,1645-1659.
    Haggerty, S.E., 1999. A diamond trilogy:superplumes, supercontinents, and supernovae. Science 285. 851-860.
    Haggerty, S.E., Birkett, T., 2004. Geological setting and chemistry of kimberlite clan rocks in the Dharwar Craton, India. Lithos 76(1-4), 535-549.
    Heaman, LM., 1989. The nature of the subcontinental mantle from Sr-Nd-Pb isotopic studies on kimberlitic perovskite. Earth and Planetary Science Letters 92,323-334.
    Heaman, LM., Kjarsgaard, B.A., 2000. Timing of eastern North American kimberlite magmatism:continental extension of the Great Meteor hotspot track? Earth and Planetary Science Letters 178, 253-268.
    Heaman, LM., Kjarsgaard, B.A., Creaser, RA., 2003. The timing of kimberlite magmatism in North America:implications for global kimberlite genesis and diamond exploration. Lithos 71.153-184.
    Heathcote, R.C., McCormick, G.R., 1989. Major-cation substitution in phlogopite and evolution of carbonatite in the potash sulphur springs complex, Garland County, Arkansas. American Mineralogist 74,132-140.
    Jayananda, M., Chardon, D., Peucat, J.-J., Capdevila, R., 2006.2.61 Ga potassic granites and crustal reworking in the western Dharwar craton, southern India:tectonic,geochronologic and geochemical constraints. Precambrian Research 150,1-26.
    Kamenetsky, V.S., Yaxley, G.M., 2015. Carbonate-silicate liquid immiscibility in the mantle propels kimberlite magma ascent. Geochimica et Cosmochimica Acta158, 48-56.
    Kargin, A.V., Nosova, A.A., Larionova, Y.O., Kononova, V.A., Borisovsky, S.E.,Koval'chuk, E.V., Griboedova, I.G., 2014. Mesoproterozoic orangeites(kimberliteⅡ)of west Karelia:mineralogy, geochemistry and Sr-Nd isotope composition.Petrology 22.151-183.
    Kaur, G., Mitchell, R.H., 2013. Mineralogy of P2 west kimberlite, Wajrakarur kimberlite field, Andhra Pradesh, India:kimberlite or lamproite? Mineralogical Magazine 77, 3175-3196.
    Kaur, G., Mitchell, R.H., 2016. Mineralogy of the P-12 K-Ti-richterite diopside olivine lamproite from Wajrakarur, Andhra Pradesh. India:implications for subductionrelated magmatism in eastern India. Mineralogy and Petrology 110.223-245.
    Khazan, Y., Fialko, Y., 2005. Why do kimberlites from different provinces have similar trace element patterns? Geochemistry, Geophysics, Geosystems 6.
    Kjarsgaard, BA., Pearson, D.G., Tappe, S., Nowell, G.M., Dowall, D.P., 2009.Geochemistry of hypabyssal kimberlites from Lac de Gras, Canada:comparisons to a global database and applications to the parent magma problem. Lithos 112,236-248.
    Lazarov, M., Brey, G.P., Weyer, S., 2009. Time steps of depletion and enrichment in the Kaapvaal craton as recorded by subcalcic garnets from Finsch(SA). Earth and Planetary Science Letters 279,1-10.
    Le Roex, A.P., Bell, D.R., Davis, P., 2003. Petrogenesis of group I kimberlites from kimberley, South Africa:evidence from bulk-rock geochemistry. Journal of Petrology 44, 2261-2286.
    Lehmann, B., Burgess, R., Frei, D., Belyatsky, B., Mainkar, D., Rao, N.V.C.,Heaman, L.M., 2010. Diamondiferous kimberlites in central India synchronous with Deccan flood basalts. Earth and Planetary Science Letters 290,142-149.
    Lepore, G.O., Bindi, L, Pedrazzi, G., Conticelli, S., Bonazzi, P., 2017. Structural and chemical variations in phlogopite from lamproitic rocks of the Central Mediterranean region. Lithos 286-287.191-205.
    le Roex, A.P., 1986. Geochemical correlation between southern African kimberlites and South Atlantic hotspots. Nature 324, 243.
    Meert, J.G., Santosh, M., 2017. The Columbia supercontinent revisited. Gondwana Reasarch 50, 67-83.
    Mitchell, R.H., 1986. Kimberlites:Mineralogy, Geochemistry and Petrology. Plenum Press, NewYork.
    Mitchell, R.H., 1995. Kimberlites, Orangeites and Related Rocks. Plenum Press, New York.
    Mitchell, R.H., 1997. Kimberlites, Orangeites, Lamproites, Melilitites, and Minettes:a Petrographic Atlas. Almaz Press, Thunder Bay.
    Mitchell, R.H., 2006. Potassic magmas derived from metasomatized lithospheric mantle:nomenclature and relevance to exploration for diamond-bearing rocks.Journal of the Geological Society of India 67, 317-327.
    Mitchell, R.H., 2008. Petrology of hypabyssal kimberlites:relevance to primary magma compositions. Journal of Volcanology and Geothermal Research 174,1-8.
    Mitchell, R.H., 2013. In:Pearson, D.G., Grütter, H.S., Harris, J.W., Kjarsgaard, B.A.,O'Brien, H., Rao, N.V.C., Sparks, S.(Eds.), Paragenesis and Oxygen Isotopic Studies of Serpentine in Kimberlite BT-Proceedings of 10th International Kimberlite Conference:Volume One. Springer India, New Delhi, pp. 1-12.
    Nayak, S.S., Kudari, SA.D., 1999. Discovery of diamond-bearing kimberlites in Kalyandurg area, Anantapur district Andhra Pradesh. Current Science 76,1077-1079.
    Neelakantam, S., 2001. Exploration for Diamonds in Southern India, vol. 58.Geological Survey of India Special Publication, pp. 521-555.
    Nehru, C.E., Reddy, A.K., 1989. Ultramafic xenoliths from Wajrakarur kimberlites,India. In:Ross, J., et al.(Eds.), Kimberlites and Related Rocks, Proceedings of theFourth International Kimberlite Conference, vol. 2. Geological Society of Australia Special Publication, pp. 745-759.
    Nelson, D.R., 1989. Isotopic characteristics and petrogenesis of the lamproites and kimberlites of central west Greenland. Lithos 22, 265-274.
    Nielsen, T.F.D., Jensen, S.M., Secher, K., Sand, K.K., 2009. Distribution of kimberlite and aillikite in the Diamond Province of southern West Greenland:a regional perspective based on groundmass mineral chemistry and bulk compositions.Lithos 112, 358-371.
    Nowell, G.M., Pearson, D.G., Bell, D.R., Carlson, R.W., Smith, C.B., Kempton, B.D.,Noble, S.R., 2004. Hf isotope systematics of kimberlites and their megacrysts:new constraints on their source regions. Journal of Petrology 45,1583-1612.
    Ogilvie-Harris, R.C., Field, M., Sparks, R.S.J., Walter. M.J., 2009. Perovskite from the Dutoitspan kimberlite, Kimberley, South Africa:implications for magmatic processes. Mining Magazine 73, 915-928.
    Osborne, I., Sherlock, S., Anand, M., Argles, T., 2011. New Ar-Ar ages of southern Indian kimberlites and a lamproite and their geochemical evolution. Precambrian Research 189, 91-103.
    Pandey, A., Chalapathi Rao, N.V., Pandit, D., Pankaj, P., Pandey, R., Sahoo, S.,Kumar, A., 2017a. subduction-tectonics in the evolution of the eastern Dharwar craton, Southern India:insights from the post-collisional calc-alkaline lamprophyres at the western margin of the Cuddapah basin. Precambrian Research298, 235-251.
    Pandey, A., Chalapathi Rao, N.V., Chakrabarti, R., Pandit, D., Pankaj, P., Kumar, A.,Sahoo, S., 2017b. Petrogenesis of a Mesoproterozic shoshonitic lamprophyre dyke from the Wajrakarur kimberlite field, eastern dharwar craton, Southern India:geochemical and Sr-Nd isotopic evidence for a modified sub-continental lithospheric mantle source. Lithos 292-293, 218-233.
    Pandey, R.. Rao, N.V.C., Pandit, D., Sahoo. S., Dhote, P., 2018. Imprints of Modal Metasomatism in the Post-Deccan subcontinental Lithosphere Mantle:Petrological Evidence from an ultramafic Xenolith in an Eocene lamprophyre, NW India, vol. 463. Geological Society of London.
    Paton, C., Hergt, J.M., Phillips, D., Woodhead, J.D., Shee, S.R., 2007. New insights into the genesis of Indian kimberlites from the Dharwar Craton via in situ Sr isotope analysis of groundmass perovskite. Geology 35,1011-1014.
    Paton, C., Hergt, J.M., Woodhead, J.D., Phillips, D., Shee, S.R., 2009. Identifying the asthenospheric component of kimberlite magmas from the Dharwar Craton,India. Lithos 112, 296-310.
    Paul, D.K., Crocket, J.H., Reddy, T.A.K., Pant, N.C., 2007. Petrology and geochemistry including Platinum Group element abundances of the Mesoproterozoic ultramafic(lamproite)rocks of Krishna district, southern India:implications for source rock characteristics and petrogenesis. Journal of the Geological Society of India 69. 577-596.
    Phani, P.R.C., Raju, V.V.N., 2017. A New kimberlite pipe in Balkamthota Vanka,Pennahobilam, Anantapur district, Andhra Pradesh, India. Field aspects and preliminary investigations. Periodico di Mineralogia 86, 213-228.
    Pilbeam, L.H., Nielsen, T.F.D., Waight, T.E., 2013. Digestion fractional crystallization(DFC):an important process in the genesis of kimberlites. Evidence from olivine in the majuagaa kimberlite, southern west Greenland. Journal of Petrology 54.1399-1425.
    Ramakrishnan, M., Vaidyanadhan, R., 2008. Geology of India, vol. 1. Geological Society of India, Banglore.
    Reguir, E.P., Chakhmouradian, A.R., Halden, N.M., Malkovets, V.G., Yang, P., 2009.Major-and trace-element compositional variation of phlogopite from kimberlites and carbonatites as a petrogenetic indicator. Lithos 112, 372-384.
    Ringwood, A.E., Kesson, S.E., Hibberson, W., Ware, N., 1992. Origin of kimberlites and related magmas. Earth and Planetary Science Letters 113, 521-538.
    Roeder, P.L, Schulze, D.J., 2008. Crystallization of groundmass spinel in kimberlite.Journal of Petrology 49,1473-1495.
    Romu, I., Luttinen, A., O'Brien, H., 2008. Lamproite-orangeite transition in 159 Ma dykes of dronning Maud Land, Antarctica?'(Abst.). In:9th International Kimberlite Conference, 9IKC-a-00362.
    Shaikh, A.M., Patel, S.C., Ravi, S., Behera, D., Purseth, K.L, 2017. Mineralogy of the TK1 and TK4'kimberlites'in the Timmasamudram cluster, Wajrakarur kimberlite Field, India:implications for lamproite magmatism in a field of kimberlites and ultramafic lamprophyres. Chemical Geology 445, 208-230.
    Skinner, E.M.W., 1989. Contrasting GroupⅠandⅡkimberlites petrology:towards a genetic model for kimberlites. In:Kimberlites and Related Rocks. 1. Their Composition, Occurrence, Origin and Emplacement, vol. 14. Geological Society of Australia Special Publication, pp. 528-544.
    Smith, C.B., 1983. Pb, Sr and Nd isotopic evidence for sources of southern African Cretaceous kimberlites. Nature 304, 51.
    Smith, C.B., Gurney, J.J., Skinner, E.M.W., Clement, C.R., Ebrahim, N., 1985.Geochemical character of Southern African kimberlites; a new approach based on isotopic constraints. South African Journal of Geology 88, 267-280.
    Smith, C.B., Haggerty, S.E., Chatterjee, B., Beard, A., Townend, R., 2013. Kimberlite,lamproite, ultramafic lamprophyre, and carbonatite relationships on the Dharwar Craton, India; an example from the Khaderpet pipe, a diamondiferous ultramafic with associated carbonatite intrusion. Lithos 182-183,102-113.
    Sparks, R.S.J., 2013. Kimberlite volcanism. Annual Review of Earth and Planetary Sciences 41, 497-528.
    Stripp, G.R., Field, M., Schumacher, J.C., Sparks, R.S.J., Cressy, G., 2006. Postemplacement serpentinization and related hydrothermal metamorphism in a kimberlite from Venetia, South Africa. Journal of Metamorphic Geology 24,515-534.
    Sun, S.S., McDonough, W.F., 1989. Chemical and isotopic systematics of oceanic basalts:implications for mantle composition and processes. In:Saunders, A.D.,Norry, M.J.(Eds.), Magmatism in Ocean Basins, vol. 42. Geological Society,London, pp. 313-345. Special Publication.
    Sun, J., Liu, C.-Z., Tappe, S., Kostrovitsky, S.I., Wu, F.-Y., Yakovlev,D., Yang, Y.-H.,Yang, J.-H., 2014. Repeated kimberlite magmatism beneath Yakutia and its relationship to Siberian flood volcanism:insights from in situ U-Pb and Sr-Nd perovskite isotope analysis. Earth and Planetary Science Letters 404, 283-295.https://doi.org/https://doi.org/10.1016/j.epsl.2014.07.039.
    Tainton, K.M., McKenzie, D., 1994. The generation of kimberlites, lamproites and their source rocks. Journal of Petrology 35, 787-817.
    Tappe, S., Jenner, G.A., Foley, S.F., Heaman, L, Besserer, D., Kjarsgaard, B.A., Ryan. B.,2004. Torngat ultramafic lamprophyres and their relation to the north Atlantic alkaline province. Lithos 76, 491-518. https://doi.org/https://doi.org/10.1016/j.lithos.2004.03.040.
    Tappe, S., Foley, S.F., Jenner, G.A., Kjarsgaard, B.A., 2005. Integrating ultramafic lamprophyres into the IUGS classification of igneous rocks:rationale and implications. Journal of Petrology 46.1893-1900.
    Tappe, S., Foley, S.F., Jenner, G.A., Heaman. LM., Kjarsgarad, B.A., Romer, R.L,Stracke, A., Joyce, N., Hoefs. J., 2006. Genesis of ultramafic lamprophyres and carbonatites at Aillik bay, Labrador:a consequence of incipient lithospheric thinning beneath the north Atlantic craton. Journal of Petrology 47,1261-1315.
    Tappe, S., Foley, S.F., Stracke, A., Romer, R.L, Kjarsgaard, B.A., Heaman, LM., Joyce, N.,2007. Craton reactivation on the Labrador Sea margins:~(40)Ar/39Ar age and Sr-Nd-Hf-Pb isotope constraints from alkaline and carbonatite intrusives.Earth Planetary Science Letters 256, 433-454.
    Tappe, S., Foley, S.F., Kjarsgaard, B.A., Romer, R.L, Heaman, LM., Stracke, A.,Jenner, G.A.. 2008. Between carbonatite and lamproite-diamondiferous Torngat ultramafic lamprophyres formed by carbonate fusion melting of cratonic MARID-type metasomes. Geochimica et Cosmochimica Acta 72,3258-3286.
    Tappe, S., Pearson, D.G., Nowell, G., Nielsen, T., Milstead, P., Muehlenbachs, K., 2011.A fresh isotopic look at Greenland kimberlites:cratonic mantle lithosphere imprint on deep source signal. Earth and Planetary Science Letters 305,235-248. https://doi.org/https://doi.org/10.1016/j.epsl.2011.03.005.
    Tappe, S., Steenfelt, A., Nielsen, T., 2012. Asthenospheric source of Neoproterozoic and Mesozoic kimberlites from the North Atlantic craton, West Greenland:new highprecision U-Pb and Sr-Nd isotope data on perovskite. Chemical Geology 320(321), 113-127. https://doi.org/https://doi.org/10.1016/j.chemgeo.2012.05.026.
    Tappe, S., Graham Pearson, D., Kjarsgaard, B.A., Nowell. G., Dowall, D., 2013a. Mantle transition zone input to kimberlite magmatism near a subduction zone:origin of anomalous Nd-Hf isotope systematics at Lac de Gras, Canada. Earth and Planetary Science Letters 371-372, 235-251. https://doi.org/https://doi.org/10.1016/j.epsl.2013.03.039.
    Tappe, S., Pearson, D.G., Prelevic, D., 2013b. Kimberlite, carbonatite, and potassic magmatism as part of the geochemical cycle. Chemical Geology 353, 1-3.https://doi.org/https://doi.org/10.1016/j.chemgeo.2013.04.004.
    Tappe, S.. Kjarsgaard, BA., Kurszlaukis, S., Nowell, G.M., Phillips, D., 2014. Petrology and Nd-Hf isotope geochemistry of the Neoproterozoic Amon kimberlite sills,Baffin Island(Canada):evidence for deep mantle magmatic activity linked to supercontinent cycles. Journal of Petrology 55(10), 2003-2042.
    Tappe, S., Brand, N.B., Stracke, A., van Acken, D., Liu, C.-Z., Strauss, H., Wu, F.-Y.,Luguet, A., Mitchell, R.H., 2017. Plates or plumes in the origin of kimberlites:U/Pb perovskite and Sr-Nd-Hf-Os-C-O isotope constraints from the Superior craton(Canada). Chemical Geology 455, 57-83. https://doi.org/https://doi.org/10.1016/j.chemgeo.2016.08.019.
    Tappe, S., Smart, K., Torsvik, T., Massuyeau, M., de Wit, M., 2018. Geodynamics of kimberlites on a cooling Earth:Clues to plate tectonic evolution and deep volatile cycles. Earth and Planetary Science Letters 484,1-14.
    Taylor, W.R., Kingdom, L, 1999. Mineralogy of the Jagersfontein kimberlite an unusual Group I micaceous kimberlite and a comment on the robustness of the mineralogical definition of'orangeite'. In:Gurney, J.J., Gurney, J.L, Pascoe, M.D.,Richardson. S.H.(Eds.), Proceedings of the 7th International Kimberlite Conference, vol. 1. Red Roof Design, CapeTown, pp. 861-866.
    Taylor, W.R., Tompkins, LA., Haggerty, S.E., 1994. Comparative geochemistry of West African kimberlites:evidence for a micaceous kimberlite endmember of sublithospheric origin. Geochimica et Cosmochimica Acta 58, 4017-4037. https://doi.org/https://doi.org/10.1016/0016-7037(94)90264-X.
    Torsvik, T.H., Burke, K., Steinberger, B., Webb, S.J., Ashwal, LD., 2010. Diamonds sampled by plumes from the core-mantle boundary. Nature 466, 352.
    Torsvik, T.H., Steinberger, B., Ashwal, LD., Doubrovine, P.V., Tronnes, R.G., 2016a.Earth evolution and dynamics-a tribute to Kevin Burke. Canadian Journal of Earth Sciences 53,1073-1087.
    Torsvik, T.H., Steinberger, B., Ashwal. L.D., Doubrovine, P.V., Trφnnes, R.G., 2016b.Earth evolution and dynamics—a tribute to Kevin Burke 1. Canadian Journal of Earth Sciences 53,1073-1087.
    Wu, F.-Y., Yang, Y.-H., Mitchell, R.H., Li, Q.-L., Yang, J.-H., Zhang, Y.-B., 2010. In situ U-Pb age determination and Nd isotopic analysis of perovskites from kimberlites in southern Africa and Somerset Island, Canada. Lithos 115,205-222.
    Yaxley, G.M., Kamenetsky, V.S., Nichols, G.T., Maas, R., Belousova, E., Rosenthal, A.,Norman, M., 2013. The discovery of kimberlites in Antarctica extends the vast Gondwanan Cretaceous province. Nature Communications 4, 2921.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700