用户名: 密码: 验证码:
比表面积及孔径对花岗岩力学性质影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Influence of Specific Surface and Pore Size on the Mechanical Properties of Granite
  • 作者:张宇皓 ; 张帆
  • 英文作者:ZHANG Yu-hao;ZHANG Fan;School of Civil Engineering,Architecture and Environment,Hubei University of Technology;
  • 关键词:氮吸附 ; 比表面积 ; 孔径分析 ; 花岗岩 ; 孔隙率
  • 英文关键词:nitrogen adsorption;;specific surface area;;aperture analysis;;granite;;porosity
  • 中文刊名:科学技术与工程
  • 英文刊名:Science Technology and Engineering
  • 机构:湖北工业大学土木建筑与环境学院;
  • 出版日期:2019-07-18
  • 出版单位:科学技术与工程
  • 年:2019
  • 期:20
  • 基金:国家自然科学基金(51579093)资助
  • 语种:中文;
  • 页:320-326
  • 页数:7
  • CN:11-4688/T
  • ISSN:1671-1815
  • 分类号:TU452
摘要
为研究花岗岩内部结构对其物理力学性质的影响,利用氮吸附原理的比表面积及孔径分析仪测得两种花岗岩的比表面积和孔径分布情况,对比分析了两种花岗岩的密度、孔隙率等物理性质及单轴压缩强度,发现由比表面积和孔径表征的岩石孔隙结构更能合理的解释其宏观力学行为。试验结果表明:比表面积较大的岩样强度较低。比表面积较大的岩样加剧了岩样在加载过程中微裂隙的发育,使试样的力学性能降低;孔体积较大的岩样的强度较低。岩样内部孔隙的存在加剧了内部微裂隙的发育。随着轴向压力的不断加载,这些孔隙被压缩,有的成为了微裂隙发育的通道、有的成为新裂隙产生的起源。这些微裂隙不断延伸、扩张、贯通最终使得试样在压力的作用下破坏;利用排水法测得的孔隙率不能完整的反映岩样内部孔隙的发育状态,而通过氮吸附静态容量法测得的孔体积能够较为完整的反映岩样中孔隙的发育状态。比表面积及孔径分析测试更为准确地得到岩石内部的孔隙结构,测试结果对花岗岩的宏观力学行为做出了合理解释。
        The physical and mechanical properties of rocks are affected by their internal structure. In order to study the influence of internal structure of granite on its physical and mechanical properties,the specific surface area and pore size distribution of two granites were measured by the specific surface area and pore size analyzer of nitrogen adsorption principle. By comparing and analyzing the density,porosity and uniaxial compressive strength of the two granites,it is found that the pore structure of rock characterized by specific surface area and pore diameter can explain its macroscopic mechanical behavior more reasonably. The results show that rock samples with a larger specific surface area have lower strength. The rock sample with larger specific surface area exacerbates the development of micro-cracks during the loading process,which reduces the mechanical properties of the sample. The rock samples with larger pore volumes have lower strength. The presence of internal pores in the rock sample exacerbates the development of internal microfractures. As the axial pressure is continuously loaded,these pores are compressed,some become channels for the development of micro-cracks,and some become the origin of new fissures.These micro-cracks continue to extend,expand,and penetrate,eventually causing the sample to break under pressure. The porosity measured by the drainage method cannot completely reflect the development state of the pores inside the rock sample,and the pore volume measured by the nitrogen adsorption static volume method can completely reflect the development state of the pores in the rock sample. It can be seen that the specific surface area and pore size analysis test more accurately obtain the pore structure inside the rock,and the test results can also explain the macroscopic mechanical behavior of the granite.
引文
1 Cook N G W.The failure of rock[J],International Journal of Rock Mechanics and Mining Sciences and Geomechanics Abstracts,1965,2(4):389-403
    2 Arzúa J,Alejano L R,Walton G.Strength and dilation of jointed granite specimens in servo-controlled triaxial tests[J].International Journal of Rock Mechanics and Mining Sciences,2014,69(3):93-104
    3 Eberhardt E,Stead D,Stimpson B.Quantifying progressive pre-peak brittle fracture damage in rock during uniaxial compression[J].International Journal of Rock Mechanics and Mining Sciences,1999,36(3):361-380
    4 Brace W F,Paulding B W,Scholz C.Dilatancy in the fracture of crystalline rocks[J].Journal of Geophysical Research Atmospheres,1966,71(16):3939-3953
    5 Lajtai E Z.Brittle fracture in compression[J].International Journal of Fracture,1974,10(10):525-536
    6 Hallbauer D K,Wagner H,Cook N G W.Some observations concerning the microscopic and mechanical behavior of quartzite specimens in stiff,triaxial compression tests[J].International Journal of Rock Mechanics and Mining Sciences,1973,10(6):713-726
    7 Tkalich D,Fourmeau M,Kane A,et al.Experimental and numerical study of Kuru granite under confined compression and indentation[J].International Journal of Rock Mechanics and Mining Sciences,2016,87:55-68
    8朱珍德,徐卫亚,张爱军.脆性岩石损伤断裂机理分析与试验研究[J].岩石力学与工程学报,2003(9):1411-1416Zhu Zhende,Xu Weiya,Zhang Aijun.Mechanism analysis and testing study on damage and fracture of brittle rock[J].Chinese Journal of Rock Mechanics and Engineering,2003(9):1411-1416
    9刘泉声,胡云华,刘滨.基于试验的花岗岩渐进破坏本构模型研究[J].岩土力学,2009,30(2):289-296Liu Quansheng,Hu Yunhua,Liu Bin.Progressive damage constitutive models of granite based on experimental results[J].Rock and Soil Mechanics,2009,30(2):289-296
    10李春阳,周宗红,刘松.花岗岩单轴循环加卸载试验及声发射特性研究[J].煤矿机械,2016,37(11):67-70Li Chunyang,Zhou Zonghong,Liu Song.Experimental test and acoustic emission characteristics of granite under uniaxial cyclic loading and unloading conditions[J].Coal Mine Machinery,2016,37(11):67-70
    11邵珠山,李晓照.基于细观力学的脆性岩石蠕变损伤特性研究[J].固体力学学报,2015,36(增刊1):44-49Shao Zhushan,Li Xiaozhao.Creep damage characteristics of brittle rock based on micromechanics[J].Chinese Journal of Solid Mechanics,2015,36(S1):44-49
    12朱泽奇,盛谦,冷先伦,等.大岗山花岗岩动态力学特性的试验研究[J].岩石力学与工程学报,2010,29(增刊2):3469-3474Zhu Zeqi,Sheng Qian,Leng Xianlun,et al.Experimental study of dynamic mechanical property of dagangshan granite[J].Chinese Journal of Rock Mechanics and Engineering,2010,29(S2):3469-3474
    13孙强,张志镇,薛雷,等.岩石高温相变与物理力学性质变化[J].岩石力学与工程学报,2013(5):935-942Sun Qiang,Zhang Zhizhen,Xue Lei,et al.Physicl-mechanical properties variation of rock with phase transformation under high temperature[J].Chinese Journal of Rock Mechanics and Engineering,2013(5):935-942
    14高涛,赵静.不同温度作用下油页岩内部孔隙结构精细表征[J].中国矿业,2018,27(12):153-156Gao Tao,Zhao Jing.Advanced characterization of pores in oil shale at different temperatures[J].Chinese Mining Magazine,2018,27(12):153-156
    15李海涛,邓少贵,牛云峰,等.低孔渗砂岩孔隙结构分类方法研究[J].CT理论与应用研究,2018,27(5):551-560Li Haitao,Deng Shaogui,Niu Yunfeng,et al.Study on the classification method of pore structure of low porosity and permeability sandstone[J].CT Theory and Application,2018,27(5):551-560
    16闫小庆,周翠英,房营光,等.荷载作用下软土压缩模量与孔隙结构关系研究[J].中山大学学报(自然科学版),2018,57(5):57-63Yan Xiaoqing,Zhou Cuiying,Fang Yingguang,et al.Research on relationship between compression modulus of soft soil under loading and its pores structure[J].Acta Scientiarum Naturalium Universitatis Sunyatseni,2018,57(5):57-63
    17陶高梁.岩土多孔介质孔隙结构的分形研究及其应用[D].武汉:武汉理工大学,2010Tao Gaoliang.Fractal approach on pore structure of rock and soil porous media and its applications[D].Wuhan:Wuhan University of Technology,2010
    18肖婷,方永浩,章凯,等.碳化对粉煤灰水泥石比表面积和孔径的影响[J].建筑材料学报,2005(4):452-455Xiao Ting,Fang Yonghao,Zhang Kai,et al.Effect of carbonation on the specific surface area and pore structure of fly ash cement paste[J].Journal of Building Materials,2005(4):452-455
    19冀志江,侯国艳,王静,等.多孔结构无机材料比表面积和孔径分布对调湿性的影响[J].岩石矿物学杂志,2009,28(6):653-660Ji Zhijiang,Hou Guoyan,Wang Jing,et al.The effect of the specific surface area and pore radius distribution of inorganic material on the capacity of absorbing and desorbing moisture in the air[J].Acta Petrologica et Mineralogica,2009,28(6):653-660
    20孙维民,廉舒,徐菁华.氮吸附法测定纳米粒子的比表面积实验[J].大学物理实验,2010,23(4):1-3Sun Weimin,Lian Shu,Xu Jinghua.Experiment on determination of specific surface area of nanoparticles by nitrogen adsorption[J].Physical Experiment of College,2010,23(4):1-3
    21温淑瑶,马占青,马毅杰.酸活化对膨润土比表面积和孔径的影响研究[J].实验技术与管理,2011,28(10):44-46Wen Shuyao,Ma Zhanqing,Ma Yijie.Research on influence of acid modification upon specific surface area and hole radius of bentonite[J].Experiment Technology and Management,2011,28(10):44-46
    22郑明飞,张爱清,杨天耀,等.石墨纤维的比表面积与孔隙结构的测定与分析[J].功能材料,2011,42(增刊4):717-720Zheng Mingfei,Zhang Aiqing,Yang Tianyao,et al.Determination and analysis of specific surface area and pore structure of graphite fiber[J].Functional Material,2011,42(S4):717-720
    23胡林彦.采用比表面积和孔径分析仪测量纳米颗粒粒径[J].中国粉体技术,2017,23(4):39-42Hu Linyan.Measurement of nano-particle size using surface area and porosity analyzer[J].China Powder Science and Technology,2017,23(4):39-42
    24操旺进.循环加卸载条件下花岗岩气体渗透性试验研究[D].武汉:湖北工业大学,2018Cao Wangjin.Study on the gas permeability of granite under cyclic loading and unloading[D].Wuhan:Hubei University of Technology,2018
    25邓恩德,金军,王冉,等.黔北地区龙潭组海陆过渡相页岩微观孔隙特征及其储气性[J].科学技术与工程,2017,17(24):190-195Deng Ende,Jin Jun,Wang Ran,et al.Characteristics of microscopic pore and gas storage on shale in permian longtan formation,northern guizhou[J].Science Technology and Engineering,2017,17(24):190-195
    26朱如凯,吴松涛,苏玲,等.中国致密储层孔隙结构表征需注意的问题及未来发展方向[J].石油学报,2016,37(11):1323-1336Zhu Rukai,Wu Songtao,Su Ling,et al.Problems and future works of porous texture characterization of tight reservoirs in China[J].Acta Petrolei Sinica,2016,37(11):1323-1336
    27苟启洋,徐尚,郝芳,等.纳米CT页岩孔隙结构表征方法---以JY-1井为例[J].石油学报,2018,39(11):1253-1261Gou Qiyang,Xu Shang,Hao Fang,et al.Characterization method of shale pore structure based on nano-CT:a case study of well JY-1[J].Acta Petrolei Sinica,2018,39(11):1253-1261
    28李术才,许新骥,刘征宇,等.单轴压缩条件下砂岩破坏全过程电阻率与声发射响应特征及损伤演化[J].岩石力学与工程学报,2014,33(1):14-23Li Shucai,Xu Xinji,Liu Zhengyu,et al.Electrical resistivity and acoustic emission response characteristics and damage evolution of sandstone during whole process of uniaxial compression[J].Chinese Journal of Rock Mechanics and Engineering,2014,33(1):14-23
    29肖福坤,刘刚,秦涛,等.拉-压-剪应力下细砂岩和粗砂岩破裂过程声发射特性研究[J].岩石力学与工程学报,2016,35(增刊2):3458-3472Xiao Fukun,Liu Gang,Qin Tao,et al.Acoustic emission(AE)characteristics of fine sandstone and coarse sandstone fracture process under tension-compression-shear stress[J].Chinese Journal of Rock Mechanics and Engineering,2016,35(S2):3458-3472
    30 Thommes M,Cychosz K A.Physical adsorption characterization of nanoporous materials:progress and challenges[J].Adsorption,2014,20(2):233-250
    31朱敏轻.用氮吸附静态容量法表征催化剂及其他吸附剂的物理结构[J].齐鲁石油化工,2006,34(1):14-17Zhu Minqing.The physical structure of catalyst and other adsorbents was characterized by nitrogen adsorption static capacity method[J].Qilu Petrochemical Technology,2006,34(1):14-17

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700