用户名: 密码: 验证码:
含倾斜弱面介质中动态裂纹扩展行为研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Experimental study on influences of inclined weak interface on the dynamic crack propagation behavior
  • 作者:许鹏 ; 杨仁树 ; 鞠杨 ; 夏开文 ; 郭洋
  • 英文作者:XU Peng;YANG Ren-shu;JU Yang;XIA Kai-wen;GUO Yang;School of Mechanics & Civil Engineering, China University of Mining & Technology (Beijing);State Key Laboratory for Geomechanics and Deep Underground Engineering;Civil and Resource Engineering School,University of Science and Technology Beijing;State Key Laboratory of Hydraulic Engineering Simulation and Safety, Tianjin University;
  • 关键词:霍普金森杆 ; 弱面 ; 裂纹偏转 ; 应变场 ; 开裂应变
  • 英文关键词:split Hopkinson pressure bar;;weak interface;;crack deflection;;strain field;;fracturing strain
  • 中文刊名:岩土工程学报
  • 英文刊名:Chinese Journal of Geotechnical Engineering
  • 机构:中国矿业大学(北京)力学与建筑工程学院;中国矿业大学(北京)深部岩土力学与地下工程国家重点实验室;北京科技大学土木与资源工程学院;天津大学水利仿真与安全国家重点实验室;
  • 出版日期:2019-05-18 16:54
  • 出版单位:岩土工程学报
  • 年:2019
  • 期:09
  • 基金:国家重点研发计划项目(2016YFC0600903);; 高等学校学科创新引智计划项目(B14006)
  • 语种:中文;
  • 页:71-78
  • 页数:8
  • CN:32-1124/TU
  • ISSN:1000-4548
  • 分类号:TU45
摘要
为研究冲击荷载下运动裂纹遇到介质中倾斜弱面后的动态断裂行为,采用霍普金森杆作为冲击加载装置,利用高速相机记录倾斜弱面介质中运动裂纹的扩展过程,并结合数字图像相关方法对裂纹周围应变场的演化过程、裂纹尖端的开裂应变以及裂纹的扩展速度进行了分析。结果表明,在冲击荷载下,运动裂纹在遇到弱面后易偏向弱面扩展,裂纹偏转后的开裂应变和扩展速度都显著提高。此外,应力加载率对运动裂纹的扩展有显著影响。随着加载率的提高,动态裂纹沿弱面扩展一定距离后将再次进入基质扩展,且运动裂纹沿弱面扩展的偏移距离逐渐减小。在高加载率下,裂纹沿弱面扩展的速度基本保持稳定,但再次穿过弱面后的裂纹数量和长度不断增加。在相同加载率下,弱面的强度越低,裂纹沿弱面扩展的距离越长。
        In order to study the dynamic fracture behavior of layered materials with weak plane under impact loads combined with the split Hopkinson pressure bar, which is applied as an impact loading configuration, the dynamic fracturing process is recorded using the high speed camera, and the digital image correlation method is adopted to evaluate the strain fields around crack, failure strain and crack velocity. The results show that the running crack is more favorable to deflection after the crack encounters a weak plane under dynamic loading conditions, and the failure strain drops slightly after it deflects, while the crack velocity jumps to a high stage. Besides, the loading rate plays a significant role in crack propagation when passing through the weak interface. The crack length along the weak plane decreases with the increase of loading rate, and the running crack will expand to the matrix after it propagates to a certain distance along the weak plane. The crack velocity along the weak interface remains constant under a high loading rate, whereas both the number and the length of the crack increase after it passes through the weak plane. Moreover, the crack length along the weak plane increases with the decrease of the strength of the weak plane at a given loading rate.
引文
[1]孙可明,张树翠.含层理页岩气藏水力压裂裂纹扩展规律解析分析[J].力学学报, 2016, 48(5):1229–1237.(SUN Ke-ming, ZHANG Shu-cui. Hydraulic fracture propagation in shale gas bedding reservoir analytical analysis[J]. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(5):1229–1237.(in Chinese))
    [2]刘刚,姜清辉,熊峰,等.多节理岩体裂纹扩展及变形破坏试验研究[J].岩土力学, 2016, 37(增刊1):151–158.(LIU Gang, JIANG Qing-hui, XIONG Feng, et al.Experimental study of crack propagation and deformation failure of multiple-jointed rock mass[J]. Rock and Soil Mechanics, 2016, 37(S1):151–158.(in Chinese))
    [3] SIEGMUND T, FLECK N A, NEEDLEMAN A. Dynamic crack growth across an interface[J]. International Journal of Fracture, 1997, 85(4):381–402.
    [4] HE Ming-Yuan, HUTCHINSON J W. Crack deflection at an interface between dissimilar elastic materials[J]. International Journal of Solids and Structures, 1989, 25(9):1053–1067.
    [5] PARMIGIANI J P, THOULESS M D. The roles of toughness and cohesive strength on crack deflection at interfaces[J].Journal of the Mechanics and Physics of Solids, 2006, 54(2):266–287.
    [6] XU L R, HUANG Y Y, ROSAKIS A J. Dynamic crack deflection and penetration at interfaces in homogeneous materials:experimental studies and model predictions[J].Journal of the Mechanics and Physics of Solids, 2003, 51(3):461–486.
    [7] ALAM M, PARMIGIANI J P, KRUZIC J J. An experimental assessment of methods to predict crack deflection at an interface[J]. Engineering Fracture Mechanics, 2017, 181:116–129.
    [8] SUNDARAM B M, TIPPUR H V. Dynamics of crack penetration vs branching at a weak interface:an experimental study[J]. Journal of the Mechanics and Physics of Solids,2016, 96:312–332.
    [9] YANG R, XU P, YUE Z, et al. Dynamic fracture analysis of crack–defect interaction for mode I running crack using digital dynamic caustics method[J]. Engineering Fracture Mechanics, 2016, 161:63–75.
    [10]杨仁树,丁晨曦,杨国梁,等.微差爆破的爆生裂纹扩展特性试验研究[J].振动与冲击, 2017, 36(24):97–102.(YANG Ren-shu, DING Chen-xi, YANG Guo-liang, et al.Tests for blasting induced crack propagation characteristics of short-delay blasting[J]. Journal of Vibration and Shock, 2017,36(24):97–102.(in Chinese))
    [11]岳中文,宋耀,王煦,等.不同倾角预制裂纹缺陷与运动裂纹的相互作用[J].爆炸与冲击, 2017, 37(1):162–168.(YUE Zhong-wen, SONG Yao, WANG Xu, et al.Interaction between a pre-existing crack defect with different angles and a running crack[J]. Explosion and Shock Waves,2017, 37(1):162–168.(in Chinese))
    [12] LINDHOLM U. Some experiments with the split Hopkinson pressure bar[J]. Journal of the Mechanics and Physics of Solids, 1964, 12(5):317–35.
    [13] WANG Q Z, FENG F, NI M, et al. Measurement of mode I and mode II rock dynamic fracture toughness with cracked straight through flattened Brazilian disc impacted by split Hopkinson pressure bar[J]. Engineering Fracture Mechanics,2011, 78(12):2455–2469.
    [14]杨井瑞,张财贵,周妍,等.用SCDC试样测试岩石动态断裂韧度的新方法[J].岩石力学与工程学报, 2015,34(2):279–292.(YANG Jing-rui, ZHANG Cai-gui, ZHOU Yan, et al. A new method for determining dynamic fracture toughness of rock using SCDC specimens[J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(2):279–292.(in Chinese))
    [15]陈静静.基于高速DIC方法的脆性材料动态力学性能研究[D].北京:北京理工大学, 2014.(CHEN Jing-jing. Study on the dynamic mechanical properties of brittle materials by high-speed DIC[D]. Beijing:Beijing Institute of Technology,2014.(in Chinese))
    [16] CHU T C, RANSON W F, SUTTON M A. Applications of digital-image-correlation techniques to experimental mechanics[J].Experimental Mechanics, 1985, 25(3):232–244.
    [17] CHEN R, XIA K, DAI F, et al. Determination of dynamic fracture parameters using a semi-circular bend technique in split Hopkinson pressure bar testing[J]. Engineering Fracture Mechanics, 2009, 76(9):1268–1276.
    [18] ZHOU Ying-xin, XIA Kai-wen, LI Xi-bing, et al. Suggested methods for determining the dynamic strength parameters and Mode-I fracture toughness of rock materials[J]. International Journal of Rock Mechanics&Mining Sciences, 2012, 49(1):105–112.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700