用户名: 密码: 验证码:
Crustal S-wave velocity structure across the northeastern South China Sea continental margin: implications for lithology and mantle exhumation
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Crustal S-wave velocity structure across the northeastern South China Sea continental margin: implications for lithology and mantle exhumation
  • 作者:WenAi ; Hou ; Chun-Feng ; Li ; XiaoLi ; Wan ; MingHui ; Zhao ; XueLin ; Qiu
  • 英文作者:WenAi Hou;Chun-Feng Li;XiaoLi Wan;MingHui Zhao;XueLin Qiu;Institute of Marine Geology and Resources, Zhejiang University;Laboratory for Marine Mineral Resources, Qingdao National Laboratory for Marine Science and Technology;State Key Laboratory of Marine Geology, Tongji University;South China Sea Institute of Oceanology, Chinese Academy of Sciences;
  • 英文关键词:South China Sea;;continental margin;;crustal structure;;converted S-wave;;VP/VS ratio;;lithology;;serpentinization
  • 中文刊名:Earth and Planetary Physics
  • 英文刊名:地球与行星物理(英文)
  • 机构:Institute of Marine Geology and Resources, Zhejiang University;Laboratory for Marine Mineral Resources, Qingdao National Laboratory for Marine Science and Technology;State Key Laboratory of Marine Geology, Tongji University;South China Sea Institute of Oceanology, Chinese Academy of Sciences;
  • 出版日期:2019-07-15
  • 出版单位:Earth and Planetary Physics
  • 年:2019
  • 期:04
  • 基金:South China Sea Institute of Oceanology (SCSIO) for providing R/V Shiyan-2 to carry out this experiment,sponsored by Oceanographic Research Vessel Sharing Plan (NORC2016-08) of National Natural Science Foundation of China;; funded by National Natural Science Foundation of China (Grant Nos. 41776057, 41761134051, 91858213, 41730532 and 91428039)
  • 语种:英文;
  • 页:34-49
  • 页数:16
  • CN:10-1502/P
  • ISSN:2096-3955
  • 分类号:P315.7
摘要
The northeastern margin of the South China Sea(SCS), developed from continental rifting and breakup, is usually thought of as a non-volcanic margin. However, post-spreading volcanism is massive and lower crustal high-velocity anomalies are widespread, which complicate the nature of the margin here. To better understand crustal seismic velocities, lithology, and geophysical properties, we present an S-wave velocity(VS) model and a VP/VS model for the northeastern margin by using an existing P-wave velocity(VP) model as the starting model for 2-D kinematic S-wave forward ray tracing. The Mesozoic sedimentary sequence has lower VP/VS ratios than the Cenozoic sequence; in between is a main interface of P-S conversion. Two isolated high-velocity zones(HVZ) are found in the lower crust of the continental slope, showing S-wave velocities of 4.0–4.2 km/s and VP/VS ratios of 1.73–1.78. These values indicate a mafic composition, most likely of amphibolite facies. Also, a VP/VS versus VP plot indicates a magnesium-rich gabbro facies from post-spreading mantle melting at temperatures higher than normal. A third high-velocity zone(VP: 7.0–7.8 km/s; VP/VS: 1.85–1.96), 70-km wide and 4-km thick in the continent-ocean transition zone, is most likely to be a consequence of serpentinization of upwelled upper mantle. Seismic velocity structures and also gravity anomalies indicate that mantle upwelling/serpentinization could be the most severe in the northeasternmost continent-ocean boundary of the SCS. Empirical relationships between seismic velocity and degree of serpentinization suggest that serpentinite content decreases with depth, from 43% in the lower crust to 37% into the mantle.
        The northeastern margin of the South China Sea(SCS), developed from continental rifting and breakup, is usually thought of as a non-volcanic margin. However, post-spreading volcanism is massive and lower crustal high-velocity anomalies are widespread, which complicate the nature of the margin here. To better understand crustal seismic velocities, lithology, and geophysical properties, we present an S-wave velocity(VS) model and a VP/VS model for the northeastern margin by using an existing P-wave velocity(VP) model as the starting model for 2-D kinematic S-wave forward ray tracing. The Mesozoic sedimentary sequence has lower VP/VS ratios than the Cenozoic sequence; in between is a main interface of P-S conversion. Two isolated high-velocity zones(HVZ) are found in the lower crust of the continental slope, showing S-wave velocities of 4.0–4.2 km/s and VP/VS ratios of 1.73–1.78. These values indicate a mafic composition, most likely of amphibolite facies. Also, a VP/VS versus VP plot indicates a magnesium-rich gabbro facies from post-spreading mantle melting at temperatures higher than normal. A third high-velocity zone(VP: 7.0–7.8 km/s; VP/VS: 1.85–1.96), 70-km wide and 4-km thick in the continent-ocean transition zone, is most likely to be a consequence of serpentinization of upwelled upper mantle. Seismic velocity structures and also gravity anomalies indicate that mantle upwelling/serpentinization could be the most severe in the northeasternmost continent-ocean boundary of the SCS. Empirical relationships between seismic velocity and degree of serpentinization suggest that serpentinite content decreases with depth, from 43% in the lower crust to 37% into the mantle.
引文
Au,D.,and Clowes,R.M.(1984).Shear-wave velocity structure of the oceanic lithosphere from ocean bottom seismometer studies.Geophys.J.R.astr.Soc.,77(1),105-123.https://doi.org/10.1111/j.1365-246x.1984.tb01927.x
    Bautista,B.C.,Bautista,M.L.P.,Oike,K.,Wu,F.T.,and Punongbayan,R.S.(2001).A new insight on the geometry of subducting slabs in northern Luzon,Philippines.Tectonophysics,339(3-4),279-310.https://doi.org/10.1016/S0040-1951(01)00120-2
    Briais,A.,Patriat,P.,and Tapponnier,P.(1993).Updated interpretation of magnetic anomalies and seafloor spreading stages in the South China Sea:implications for the tertiary tectonics of Southeast Asia.J.Geophys.Res.Solid Earth,98(B4),6299-6382.https://doi.org/10.1029/92JB02280
    Browning,P.(1984).Cryptic variation within the cumulate sequence of the Oman ophiolite:magma chamber depth and petrological implications.Geol.Soc.Spec.Publ.,13(1),71-82.https://doi.org/10.1144/GSL.SP.1984.013.01.07
    Castagna,J.P.,Batzle M.L.,and Eastwood R.L.E.(1985).Relationships between compressional-wave and shear-wave velocities in clastic silicate rocks.Geophysics,50(4),571-581.https://doi.org/10.1190/1.1441933
    Chian,D.,Louden K.E.,Minshull,T.A.,and Whitmarsh,R.B.(1999).Deep structure of the ocean-continent transition in the Southern Iberia abyssal plain from seismic refraction profiles:Ocean Drilling Program(Legs 149 and173)transect.J.Geophys.Res.Solid Earth,104(B4),7443-7462.https://doi.org/10.1029/1999JB900004
    Christensen,N.I.(1966).Elasticity of ultrabasic rocks.J.Geophys.Res.,71(24),5921-5931.https://doi.org/10.1029/JZ071i024p05921
    Christensen,N.I.,and Mooney,W.D.(1995).Seismic velocity structure and composition of the continental crust:a global view.J.Geophys.Res.Solid Earth,100(B6),9761-9788.https://doi.org/10.1029/95JB00259
    Christensen,N.I.(1996).Poisson’s ratio and crustal seismology.J.Geophys.Res.Solid Earth,101(B2),3139-3156.https://doi.org/10.1029/95JB03446
    Dean,S.M.,Minshull,T.A.,Whitmarsh,R.B.,and Louden,K.E.(2000).Deep structure of the ocean-continent transition in the Southern Iberia Abyssal Plain from seismic refraction profiles:the IAM-9 transect at 40°20’N.J.Geophys.Res.Solid Earth,105(B3),5859-5885.https://doi.org/10.1029/1999JB900301
    Digranes,P.,Mjelde,P.,Kodaira,S.,Shimamura,H.,Kanazawa,T.,Shiobara,H.,and Berg,E.W.(1998).A regional shear-wave velocity model in the central V?ring basin,N.Norway,using three-component ocean bottom seismographs.Tectonophysics,293(3-4),157-174.https://doi.org/10.1016/S0040-1951(98)00093-6
    Ding,W.W.,Li,J.B.,Clift,P.D.,and IODP Expedition 349 Scientists.(2016).Spreading dynamics and sedimentary process of the Southwest Sub-basin,South China Sea:constraints from multi-channel seismic data and IODPExpedition 349.J.Asian Earth Sci.,115,97-113.https://doi.org/10.1016/j.jseaes.2015.09.013
    Eccles,J.D.,White,R.S.,and Christie,P.A.F.(2009).Identification and inversion of converted shear waves:case studies from the European North Atlantic continental margins.Geophys.J.Int.,179(1),381-400.https://doi.org/10.1111/j.1365-246X.2009.04290.x
    Evans,B.W.,Hattori,K.,and Baronnet,A.(2013).Serpentinite:what,why,where?.Elements,9(2),99-106.https://doi.org/10.2113/gselements.9.2.99
    Fan,C.Y.,Xia,S.H.,Zhao,F.,Sun,J.L.,Cao,J.H.,Xu,H.L.,and Wan,K.Y.(2017).New insights into the magmatism in the northern margin of the South China Sea:spatial features and volume of intraplate seamounts.Geochem.Geophys.Geosyst.,18(6),2216-2239.https://doi.org/10.1002/2016GC006792
    Gao,J.W.,Wu,S.G.,McIntosh,K.,Mi,L.J.,Yao,B.C.,Chen,Z.M.,and Jia,L.K.(2015).The continent-ocean transition at the mid-northern margin of the South China Sea.Tectonophysics,654,1-19.https://doi.org/10.1016/j.tecto.2015.03.003
    Gardner,G.H.F.,Gardner,L.W.,and Gregory,A.R.(1974).Formation velocity and density-the diagnostic basics for stratigraphic traps.Geophysics,39(6),770-780.https://doi.org/10.1190/1.1440465
    Hacker,B.R.,and Abers,G.A.(2004).Subduction factory 3:An excel worksheet and macro for calculating the densities,seismic wave speeds,and H2Ocontents of minerals and rocks at pressure and temperature.Geochem.Geophys.Geosyst.,5(1),Q01005.https://doi.org/10.1029/2003GC000614
    Hall,R.,and Spakman,W.(2002).Subducted slabs beneath the eastern Indonesia-Tonga region:insights from tomography.Earth Planet.Sci.Lett.,201(2),321-336.https://doi.org/10.1016/s0012-821x(02)00705-7
    He,L.J.,Xiong,L.P.,and Wang,J.Y.(1998).The geothermal characteristics in South China Sea.China Offshore Oil and Gas,12(2),87-90.
    Holbrook,W.S.,Mooney,W.D.,and Christensen,N.I.(1992).The seismic velocity structure of the deep continental crust.In D.M.Fountion,et al.(Eds.),Continental Lower Crust(pp.1-43).Amsterdam:Elsevier.
    Hu,D.K.,Zhou,D.,Wu,X.J.,and He,M.(2008).Origin of high magnetic anomaly belt in northeastern South China Sea as indicated by geophysical inversion.J.Trop.Oceanograph.(in Chinese),27(1),32-37.https://doi.org/10.3969/j.issn.1009-5470.2008.01.007
    Korenaga,J.,Holbrook,W.S.,Kent,G.M.,Kelemen,P.B.,Detrick,R.S.,Larsen,H.C.,Hopper,J.R.,and Dahl-Jensen,T.(2000).Crustal structure of the southeast Greenland margin from joint refraction and reflection seismic tomography.J.Geophys.Res.Solid Earth,105(B9),21591-21614.https://doi.org/10.1029/2000JB900188
    Leloup,P.H.,Lacassin,R.,Tapponnier,P.,Schárer,U.,Zhong,D.L.,Liu,X.H.,Zhang,L.S.,Ji,S.C.,and Trinh,P.T.(1995).The Ailao Shan-Red river shear zone(Yunnan,China),tertiary transform boundary of Indochina.Tectonophysics,251(1-4),3-84.https://doi.org/10.1016/0040-1951(95)00070-4
    Li,C.-F.,Zhou,Z.Y.,Hao,H.J.,Chen,H.J.,Wang,J.L.,Chen,B.,and Wu,J.S.(2008).Late Mesozoic tectonic structure and evolution along the presentday northeastern South China Sea continental margin.J.Asian Earth Sci.,31(4-6),546-561.https://doi.org/10.1016/j.jseaes.2007.09.004
    Li,C.-F.,Shi,X.B.,Zhou,Z.Y.,Li,J.B.,Geng,J.H.,and Chen,B.(2010).Depths to the magnetic layer bottom in the South China Sea area and their tectonic implications.Geophys.J.Int.,182(3),1229-1247.https://doi.org/10.1111/j.1365-246X.2010.04702.x
    Li,C.-F.,and Song,T.R.(2012).Magnetic recording of the Cenozoic oceanic crustal accretion and evolution of the South China Sea basin.Chin.Sci.Bull.,57(24),3165-3181.https://doi.org/10.1007/s11434-012-5063-9
    Li,C.-F.,Xu,X.,Lin,J.,Sun,Z.,Zhu,J.,Yao,Y.J.,Zhao,X.X.,Liu,Q.S.,Kulhanek,D.K.,…Zhang,G.L.(2014).Ages and magnetic structures of the South China Sea constrained by deep tow magnetic surveys and IODP Expedition 349.Geochem.Geophys.Geosyst.,15(2),4958-4983.https://doi.org/10.1002/2014GC005567
    Li,C.-F.,and Wang,J.(2016).Variations in Moho and Curie depths and heat flow in eastern and southeastern Asia.Mar.Geophys.Res.,37(1),1-20.https://doi.org/10.1007/s11001-016-9265-4
    Li,Y.Q.,Yan,P.,Wang,Y.L.,and Zhong,G.J.(2017).Deep crustal structure revealed by ocean bottom seismic profile OBS2015-1 in southwestern Dongsha waters.J.Trop.Oceanogr.(in Chinese),36(5),83-92.https://doi.org/10.11978/2016122
    Mjelde,R.,Raum,T.,Digranes,P.,Shimamura,H.,Shiobara,H.,and Kodaira,S.(2003).Vp/Vs ratio along the V?ring margin,NE Atlantic,derived from OBSData:implications on lithology and stress field.Tectonophysics,369(3-4),175-197.https://doi.org/10.1016/S0040-1951(03)00198-7
    Neidell,N.S.(1985).Land applications of shear waves.Leading Edge,4(11),32-44.https://doi.org/10.1190/1.1439115
    Nissen,S.S.,Hayes,D.E.,Buhl,P.,Diebold,J.,Yao,B.C.,Zeng,W.J.,and Chen,Y.Q.(1995).Deep penetration seismic soundings across the northern margin of the South China Sea.J.Geophys.Res.Solid Earth,100(B11),22407-22433.https://doi.org/10.1029/95JB01866
    Pubellier,M.,Monnier,C.,Maury,R.,and Tamayo,R.(2004).Plate kinematics,origin and tectonic emplacement of supra-subduction ophiolites in SE Asia.Tectonophysics,392(1-4),9-36.https://doi.org/10.1016/j.tecto.2004.04.028
    Ru,K.,and Pigott,J.D.(1986).Episodic rifting and subsidence in the South China Sea.AAPG Bull.,70(9),1136-1155.https://doi.org/10.1029/JB091iB10p10513
    Rudnick,R.L.,and Fountain,D.M.(1995).Nature and composition of the continental crust:a lower crustal perspective.Rev.Geophys.,33(3),267-309.https://doi.org/10.1029/95RG01302
    Sandwell,D.T.,and Smith,W.H.F.(2009).Global marine gravity from retracked Geosat and ERS-1 altimetry:ridge segmentation versus spreading rate.J.Geophys.Res.Solid Earth,114(B1),B01411.https://doi.org/10.1029/2008JB006008
    Sandwell,D.T.,Garcia,E.,Soofi,K.,Wessel,P.,Chandler,M.,and Smith,W.H.F.(2013).Toward 1-mGal accuracy in global marine gravity from CryoSat-2,Envisat,and Jason-1.Lead Edge,32(8),892-899.https://doi.org/10.1190/tle32080892.1
    Sato,H.,and Ito,K.(2001).H2O fluid distribution in mantle rock at 1 GPa?:constraints from Vs-Vp/Vs diagram.Bull.Earthq.Res.Inst.Univ.,Tokyo,76(3),305-310.
    Savva,D.,Pubellier,M.,Franke,D.,Chamot-Rooke,N.,Meresse,F.,Steuer,S.,and Auxietre,J.L.(2014).Different expressions of rifting on the South China Sea margins.Mar.Pet.Geol.,58,579-598.https://doi.org/10.1016/j.marpetgeo.2014.05.023
    Shi,H.S.,and Li,C.F.(2012).Mesozoic and early Cenozoic tectonic convergence-to-rifting transition prior to opening of the South China Sea.Int.Geol.Rev.,54(15),1801-1828.
    https://doi.org/10.1080/00206814.2012.677136
    Shi,X.B.,Qiu,X.L.,Xia,K.Y.,and Zhou,D.(2003).Heat flow characteristics and its tectonic significance of South China Sea.J.Trop.Oceanogr.(in Chinese),22(2),63-73.https://doi.org/10.3969/j.issn.1009-5470.2003.02.007
    Song,T.R.(2016).The crustal structure and lithosphere rupture mechanism of the continental-ocean transition zone of the South China Sea[Ph.D.thesis].Shanghai:Tongji Unversity.
    Song,X.X.,Li,C.F.,Yao,Y.J.,and Shi,H.S.(2017).Magmatism in the evolution of the South China Sea:geophysical characterization.Mar.Geol.,394,4-15.https://doi.org/10.1016/j.margeo.2017.07.021
    Stein,C.A.,and Stein,S.(1992).A model for the global variation in oceanic depth and heat flow with lithospheric age.Nature,359(6391),123-129.https://doi.org/10.1038/359123a0
    Sun,Z.,Sun,L.T.,Zhou,D.,Cai,D.S.,Li,X.S.,Zhong,Z.H.,Jiang,J.Q.,and Fan,H.(2009).Discussion on the South China Sea evolution and lithospheric breakup through 3d analogue modeling.Earth Sci.-J.China Univ.Geosci.(in Chinese),34(3),435-447.https://doi.org/10.3321/j.issn:1000-2383.2009.03.008
    Tan,P.C.,Breivik,A.J.,Tr?nnes,R.G.,Mjelde,R.,Azuma,R.,and Eide,S.(2016).Crustal structure and origin of the Eggvin Bank west of Jan Mayen,NEAtlantic.J.Geophys.Res.Solid Earth,122(1),43-62.https://doi.org/10.1002/2016JB013495
    Tapponnier,P.,Peltzer,G.,Le Dain,A.Y.,Armijo,R.,and Cobbold,P.(1982).Propagating extrusion tectonics in Asia:new insights from simple experiments with plasticine.Geology,10(2),611-616.https://doi.org/10.1130/0091-7613(1982)10<611:petian>2.0.co;2
    Taylor,B.,and Hayes,D.E.(1980).The tectonic evolution of the South China Basin.In D.E.Hayes(Ed.),The Tectonic and Geologic Gvolution of Southeast Asian Seas and Islands(pp.89-104).Washington:AGU.https://doi.org/10.1029/GM023p0089
    Taylor,B.,and Hayes,D.E.(1983).Origin and history of the South China Sea basin.In D.E.Hayes(Ed.),The Tectonic and Geologic Evolution of Southeast Asian Seas and Islands(pp.23-56).Washington:AGU.https://doi.org/10.1029/GM027p0023
    Wan,K.Y.,Xia,S.H.,Cao,J.H.,Sun,J.L.,and Xu,H.L.(2017).Deep seismic structure of the northeastern South China Sea:origin of a high-velocity layer in the lower crust.J.Geophys.Res.Solid Earth,122(4),2831-2858.https://doi.org/10.1002/2016jb013481
    Wan,X.L.(2018).Seismic velocity structures of the transitional crust across the northeastern margin of the South China Sea[Master’s thesis].Shanghai:Tongji University.
    Wang,T.K.,Chen,M.K.,Lee,C.S.,and Xia,K.Y.(2006).Seismic imaging of the transitional crust across the northeastern margin of the South China Sea.Tectonophysics,412(3-4),237-254.https://doi.org/10.1016/j.tecto.2005.10.039
    Wei,X.D.,Zhao,M.H.,Ruan,A.G.,Qiu,X.L.,Hao,T.Y.,Wu,Z.L.,Ao,W.,and Xiong,H.(2011).Crustal structure of shear waves and its tectonic significance in the mid-northern continental margin of the South China Sea.Chinese J.Geophys.(in Chinese),54(12),3150-3160.https://doi.org/10.3969/j.issn.0001-5733.2011.12.015
    Wessel,P.,and Smith,W.H.F.(1998).New,improved version of generic mapping tools released.Eos.,79(47),579.https://doi.org/10.1029/98EO00426
    White,R.S.,McKenzie,D.,and O’Nions,R.K.(1992).Oceanic crustal thickness from seismic measurements and rare earth element inversions.J.Geophys.Res.Solid Earth,97(B13),19683-19715.https://doi.org/10.1029/92JB01749
    Xia,S.H.,Fan,C.Y.,Sun,J.L.,Cao,J.H.,Zhao,F.,and Wan,K.Y.(2017).Characteristics of late Cenozoic magmatic activities on the northern margin of South China Sea and their tectonic implications.Mar.Geol.Quat.Geol.(in Chinese),37(6),25-33.https://doi.org/10.16562/j.cnki.0256-1492.2017.06.003
    Yan,P.,Zhou,D.,and Liu,Z.S.(2001).A crustal structure profile across the northern continental margin of the South China Sea.Tectonophysics,338(1),1-21.https://doi.org/10.1016/S0040-1951(01)00062-2
    Yan,P.,Deng,H.,Liu,H.L.,Zhang,Z.R.,and Jiang,Y.K.(2006).The temporal and spatial distribution of volcanism in the South China Sea region.J.Asian Earth Sci.,27(5),647-659.https://doi.org/10.1016/j.jseaes.2005.06.005
    Yin,Z.X.,Lai,M.H.,Xiong,S.B.,Liu,H.B.,Teng,J.W.,and Kong,X.R.(1999).Crustal structure and velocity distribution from deep seismic sounding along the profile of Lianxian-Boluo-Gangkou in South China.Chinese J.Geophys.(in Chinese),42(3),383-392.https://doi.org/10.3321/j.issn:0001-5733.1999.03.011
    Zelt,C.A.,and Smith,R.B.(1992).Seismic traveltime inversion for 2-D crustal velocity structure.Geophys.J.Int.,108(1),16-34.https://doi.org/10.1111/j.1365-246X.1992.tb00836.x
    Zhang,L.,Zhao,M.H.,Qiu,X.L.,and Wang,Q.(2016).Recent progress of converted shear-wave phase identification in Nansha Block using ocean bottom seismometers data.J.Trop.Oceanogr.(in Chinese),35(1),61-71.https://doi.org/10.11978/2015025
    Zhao,M.H.,Qiu,X.L.,Xia,S.H.,Xu,H.L.,Wang,P.,Wang,T.K.,Lee,C.S.,and Xia,K.Y.(2010).Seismic structure in the northeastern South China Sea:S-wave velocity and Vp/Vs ratios derived from three-component OBS data.Tectonophysics,480(1-4),183-197.https://doi.org/10.1016/j.tecto.2009.10.004
    Zhou,D.,Wang,W.Y.,Wang,J.L.,Pang,X.,Cai,D.S.,and Sun,Z.(2006).Mesozoic subduction-accretion zone in northeastern South China Sea inferred from geophysical interpretations.Sci.China Ser.D.,49(5),471-482.https://doi.org/10.1007/s11430-006-0471-9

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700