用户名: 密码: 验证码:
基于PFC~(2D)的花岗岩新生裂隙萌生扩展过程分析
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Analysis on the initiation and propagation of newly-generated cracks in granite using PFC~(2D)
  • 作者:钱庆波 ; 徐金明 ; 黄继忠
  • 英文作者:QIAN Qingbo;XU Jinming;HUANG Jizhong;Department of Civil Engineering,Shanghai University;Institue for the Conservation of Cultural Heritage;
  • 关键词:花岗岩 ; 实际分布 ; 颗粒流 ; 新生裂隙
  • 英文关键词:granite;;real distribution;;particle flow;;newly-generated cracks
  • 中文刊名:中国地质灾害与防治学报
  • 英文刊名:The Chinese Journal of Geological Hazard and Control
  • 机构:上海大学土木工程系;上海大学文化遗产保护基础科学研究院;
  • 出版日期:2019-10-15
  • 出版单位:中国地质灾害与防治学报
  • 年:2019
  • 期:05
  • 基金:国家自然科学基金资助项目(41472254)
  • 语种:中文;
  • 页:126-134
  • 页数:9
  • CN:11-2852/P
  • ISSN:1003-8035
  • 分类号:TU45
摘要
岩石中新生裂隙萌生扩展过程是分析岩石工程性质的重要基础,可以使用颗粒流方法进行研究。本文使用花岗岩室内单轴压缩试验结果标定细观力学性质参数,使用图像处理技术确定花岗岩细观组分的实际分布,通过编制颗粒流代码来确定新生裂隙的类型和萌生扩展过程,分析了岩石变形破坏过程中不同类型新生裂隙变化的阶段性。结果表明,在单轴压缩条件下,花岗岩中新生裂隙萌生时首先出现剪切裂隙、然后出现拉伸裂隙,新生裂隙类型以拉伸裂隙为主;第一条新生剪切裂隙和拉伸裂隙分别出现在石英-黑云母、长石-石英之间;新生拉伸裂隙和剪切裂隙走向分别以331°~340°和以341°~350°为主;在峰值荷载前后新生裂隙扩展表现出明显不同的特点,在峰值荷载之前新生裂隙经受了压密、剪切裂隙增长、拉伸裂隙和剪切裂隙共同增长等阶段,在峰值荷载之后新生裂隙主要经受了拉伸裂隙和剪切裂隙快速增长阶段。本文结果对分析岩石变形破坏机理具有一定的参考价值。
        The initiation and propagation process of newly-generated micro-cracks in rocks is an important basis for analyzing the engineering properties of rocks which can be investigated using particle flow simulation method. In this study,the meso-scale mechanical properties of the granite were calibrated by the laboratory uniaxial compressive experiment,and the real composition distribution of the meso-components in granite was determined by the image processing technology. The particle flow code was then used to determine the types and the initiation and propagation process of newly-generated micro-cracks. The features of the newlygenerated cracks in various stages during the deformation or failure process in rocks were furthermore explored.The results show that:( 1) under the uniaxial compression load,the most initiated cracks are tensile ones with the firstly-generated shear cracks and following by tensile cracks;( 2) the first newly-generated shear crack occurred between the quartz and biotite,as well as the first newly-generated tensile crack occurred between feldspar and quartz;( 3) the strikes of the newly-generated tensile and shear cracks are 331° to 340° and 341°to 350°respectively;( 4) the propagation of newly-generated cracks shows different features before and after peak load. Before peak load,the newly-generated cracks undergo the stages of compaction,growth of shear crack with increase of tensile and shear cracks,and rapid increase of tensile and shear cracks,while the tensile and shear cracks increase rapidly after peak load. These results will provide certain reference for the analysis of rock deformation or failure mechanism.
引文
[1]张仕林,杜贻腾,李延春,等.单轴压缩荷载下红砂岩不同张开度三维通透裂隙扩展机理研究[J].西安科技大学学报,2016,36(4):548-553.ZHANG Shilin, DU Yiteng, LI Yanchun, et al.Propagation mechanism of 3D through fracture with under uniaxial load[J]. Journal of Xi’an University of Science and Technology,2016,36(4):548-553.
    [2]钟波波,张永彬,李宏.基于RFPA2D的岩石裂纹扩展模式的研究[J].武汉理工大学学报,2014,36(2):82-88.ZHONG Bobo,ZHANG Yongbin,LI Hong. Study of mechanisms of crack propagation of rock based on RFPA2D[J]. Journal of Wuhan University of Technology,2014,36(2):82-88.
    [3]周喻,MSIRA A,吴顺川,等.岩石节理直剪试验颗粒流宏细观分析[J].岩石力学与工程学报,2012,31(6):1245-1256.ZHOU Yu,MISRA A,WU Shunchuan,et al. Macroand meso-analyses of rock joint direct shear test using particle flow theory[J]. Chinese Journal of Rock Mechanics and Engineering,2012,31(6):1245-1256.
    [4]朱泽奇,肖培伟,盛谦,等.基于数字图像处理的非均质岩石材料破坏过程模拟[J].岩土力学,2011,32(12):3780-3786.ZHU Zeqi, XIAO Peiwei, SHENG Qian, et al.Numerical simulation of fracture propagation of heterogeneous rock material based on digital image processing[J]. Rock and Soil Mechanics,2011,32(12):3780-3786.
    [5]唐春安,刘红元,秦四清,等.非均质性对岩石介质中裂纹扩展模式的影响[J].地球物理学报,2000,43(1):116-121.TANG Chun’an,LIU Hongyuan,QIN Siqian,et al.Influence of heterogeneity on crack propagation modes in brittle rock[J]. Chinese Journal of Geophysics,2000,43(1):116-121.
    [6]王江峰,王振华,臧冀川.利用RFPA2D对单裂纹扩展规律的研究[J].煤炭技术,2018,37(5):26-29.WANG Jiangfeng, WANG Zhenhua, ZHANG Jichuan. Study of single crack propagation by RFPA2D[J]. Cola Technology,2018,37(5):26-29.
    [7] WANG P H,YANG T Y,XU T,et al. Numerical analysis on scale effect of elasticity, strength and failure patterns of jointed rock masses[J].Geosciences Journal,2016,20(4):539-549.
    [8]高美奔,李天斌,孟陆波,等.岩石变形破坏各阶段强度特征值确定方法[J].岩石力学与工程学报,2016,35(增刊2):3577-3588.GAO Meiben,LI Tianbin,MENG Lubo,et al. The method to identify characteristic stresses of rock in different stages during failure process[J]. Chinese Journal of Rock Mechanics and Engineering,2016,35(S2):3577-3588.
    [9]付金伟,朱维申,谢富东,等.岩石中三维双裂隙组扩展和贯通过程的试验研究和弹脆性模拟[J].岩土力学,2013,34(9):2489-2495.FU Jinwei, ZHU Weishen, XIE Fudong, et al.Experimental studies and elasto-brittle simulation of propagation and coalescence process of two threedimensional flaws in rocks[J]. Rock and Soil Mechanics,2013,34(9):2489-2495.
    [10] NICKSIAR M,MARTIN C D. Evaluation of methods for determining crack initiation in compression tests on low-porosity rocks[J]. Rock Mechanics and Rock Engineering,2012,45:607-617.
    [11]朱红光,谢和平,易成,等.岩石材料微裂隙演化的CT识别[J].岩石力学与工程学报,2011,30(6):1230-1238.ZHU Hongguang,XIE Heping,YI Cheng,et al. CT identification of microcracks evolution for rock materials[J]. Chinese Journal of Rock Mechanics and Engineering,2011,30(6):1230-1238.
    [12]李延春,吕海波.三轴压缩荷载作用下单裂隙扩展的CT实时扫描试验[J].岩石力学与工程学报,2010,29(2):289-296.LI Yanchun,LYU Haibo. CT real-time scanning tests on single crack propagation under triaxial compression[J]. Chinese Journal of Rock Mechanics and Engineering,2010,29(2):289-296.
    [13]任建喜,惠兴田.裂隙岩石单轴压缩损伤扩展细观机CT分析初探[J].岩土力学,2005,26(增刊):48-52.REN Jianxi,HUI Xingtian. Primary study on mesodamage propagation mechanism of cracked-sandstone using computerized tomography under uniaxial compression[J]. Rock and Soil Mechanics,2005,26(S):48-52.
    [14] HAZZARD J F,YOUNG R P,MAXWELL S C.Micromechanical modeling of cracking and failure in brittle rocks[J]. Journal of Geophysical Research,2000,105(B7):16683-16697.
    [15]黄明利,唐春安,朱万成.岩石破裂过程的数值模拟研究[J].岩石力学与工程学报,2000,19(4):468-471.HUANG Mingli, TANG Chunan, ZHU Wancheng.Numerical simulation on failure process of rock[J].Journal of Rock Mechanics and Engineering,2000,19(4):468-471.
    [16]傅宇方,黄明利,任凤玉,等.不同围压条件下孔壁周边裂纹演化的数值模拟分析[J].岩石力学与工程学报,2000,19(5):577-583.FU Yufang,HUANG Mingli,REN Fengyu,et al.Numerical analysis of crack evolution around borehole on rock sample subjected to confining pressures[J].Journal of Rock Mechanics and Engineering,2000,19(5):577-583.
    [17] POTYONDY D. A bonded-disk model for rock;relating micro-properties and macro-properties[C]//Proceedings of the Third Internationals Conference.Virginia:[s. n.],2002:340-345.
    [18]徐金明,黄大勇,朱洪昌.基于细观组分实际分布的花岗岩宏细观关系研究[J].岩石力学与工程学报,2016,35(增刊1):2635-2643.XU Jinming, HUANG Dayong, ZHU Hongchang.Relations between macro-and meso-scopic mechanical parameters of granite based on actual distributions of mesocompositions[J]. Journal of Rock Mechanics and Engineering,2016,35(S1):2635-2643.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700