用户名: 密码: 验证码:
增温对冬小麦根系残体及秸秆分解特性的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Effects of Experimental Warming on the Decomposition Properties of Winter Wheat Root Residue and Straw
  • 作者:王君 ; 陈书涛 ; 张婷 ; 刘仲旺 ; 殷梓絮 ; 王朝辉
  • 英文作者:WANG Jun;CHEN Shutao;ZHANG Tingting;LIU Zhongwang;YIN Zixu;WANG Zhaohui;Jiangsu Key Laboratory of Agricultural Meteorology/Nanjing University of Information Science & Technology;School of Applied Meteorology, Nanjing University of Information Science & Technology;
  • 关键词:增温 ; 根系残体 ; 秸秆 ; 分解特性 ; 土壤CO2排放
  • 英文关键词:experimental warming;;root residue;;straw;;decomposition property;;soil CO2 emission
  • 中文刊名:生态环境学报
  • 英文刊名:Ecology and Environmental Sciences
  • 机构:南京信息工程大学/江苏省农业气象重点实验室;南京信息工程大学应用气象学院;
  • 出版日期:2019-03-18
  • 出版单位:生态环境学报
  • 年:2019
  • 期:03
  • 基金:国家自然科学基金项目(41775151;41775152);; 江苏省“六大人才高峰”项目(2015-NY-012)
  • 语种:中文;
  • 页:48-56
  • 页数:9
  • CN:44-1661/X
  • ISSN:1674-5906
  • 分类号:S141.4
摘要
研究增温条件下冬小麦根系残体和秸秆在土壤中的分解系数的变异规律及影响因素,可为探讨农田土壤-作物系统碳循环对气候变暖的长期响应规律提供理论依据和数据支撑。为研究一个生长季的昼夜连续增温对冬小麦根系残体及秸秆分解系数以及分解后土壤酶活性等理化性质的影响,采集田间经过一个生长季昼夜增温处理的根系残体(W-根)和秸秆(W-秸秆)以及不增温处理(对照)的根系残体(CK-根)和秸秆(CK-秸秆),设置W-根、W-秸秆、CK-根、CK-秸秆的4个添加处理,每个处理设置4个添加水平(0.3、0.6、0.9、1.2g),将这些根系残体和秸秆添加到土壤中进行培养瓶培养,测定了不同处理下的土壤CO_2排放量及培养后的pH、水溶性有机碳(DOC)含量、脲酶活性、转化酶活性、过氧化氢酶活性。结果表明,土壤CO_2排放量与残体添加量之间存在极显著的一元线性回归关系,线性方程的斜率即代表了不同残体的分解系数。W-根的分解系数为(0.269 9±0.008 0) mg?g~(-1)?g~(-1),显著高于CK-根的分解系数(0.240 7±0.009 0) mg?g~(-1)?g~(-1);而W-秸秆的分解系数为(0.257 3±0.003 0) mg?g~(-1)?g~(-1),CK-秸秆的分解系数为(0.258 7±0.015 0) mg?g~(-1)?g~(-1),差异不显著(P>0.05)。不同处理下土壤CO_2排放量随土壤pH的增大而极显著(P<0.001)减小,随土壤DOC含量的增大而极显著(P<0.001)增大。不同处理下土壤CO_2排放量与土壤脲酶、转化酶、过氧化氢酶活性均存在极显著(P<0.001)的自然对数回归关系,土壤脲酶、转化酶、过氧化氢酶活性分别可解释75.7%(R~2=0.757)、80.3%(R~2=0.803)、92.7%(R~2=0.927)的土壤CO_2排放量的变异。研究表明,增温显著提高了冬小麦根系残体的分解系数,但对冬小麦秸秆的分解系数无显著影响。根系残体和秸秆在土壤中分解所释放的CO_2量与酶活性存在自然对数回归关系。
        The theoretical basis and data support for the long-term response patterns of the soil-crop system carbon cycle to climate warming can be obtained by investigating the variations and influencing factors of the decomposition coefficients of winter wheat root residue and straw under warming condition. In order to investigate the effects of diurnal warming with one growing season on the decomposition coefficients of winter wheat residues(root and straw) and the soil enzyme activities and relevant physical and chemical properties, an indoor incubation experiment was performed. The winter wheat root residue and straw for the one-season diurnal warming and control treatments(coded as W-root, W-straw, CK-root, and CK-straw) were sampled in field. There were four treatments of W-root, W-straw, CK-root, and CK-straw, and each treatment included four amendment levels of 0.3, 0.6, 0.9, 1.2 g.These root residue and straw were added into the soil for incubation. Soil CO_2 emission and soil pH, dissolved organic carbon(DOC)content, and activities of urease, invertase, and catalase after incubation were measured. Results indicated that there was a significantly linear regression relationship between soil CO_2 emission and the amount of residue(root residue or straw) addition. The slope of the regression function represented the decomposition coefficient of crop residue. The decomposition coefficients for W-root and CK-root were(0.269 9±0.008 0) and(0.240 7±0.009 0) mg?g~(-1)?g~(-1), respectively(the former was significantly higher than the latter), while they were(0.257 3±0.003 0) and(0.258 7±0.015 0) mg?g~(-1)?g~(-1) for W-straw and CK-straw, respectively(no significant difference with P>0.05). Soil CO_2 emission decreased significantly(P<0.001) with the increase of soil pH but increased significantly(P<0.001) with the increase of soil DOC content. There were highly significantly(P<0.001) relationship between soil CO_2 emission and urease, invertase, and catalase activities. Urease, invertase, and catalase activities explained 75.7%(R~2=0.757), 80.3%(R~2=0.803), and 92.7%(R~2=0.927) variations in soil CO_2 emission, respectively. Our results indicated that simulated warming significantly increased the decomposition coefficients of winter wheat root residue, but it had no effects on the decomposition coefficients of winter wheat straw. The relationship between the CO_2 emission rates from the soil with root residue and straw added and enzyme activity can be explained by the natural logarithmic models.
引文
AERTS R,2006.The freezer defrosting:Global warming and litter decomposition rates in cold biomes[J].Journal of Ecology,94(4):713-724.
    AN Y,WAN S Q,ZHOU X H,et al.,2005.Plant nitrogen concentration,use efficiency,and contents in a tallgrass prairie ecosystem under experimental warming[J].Global Chang Biology,11(10):1733-1744.
    BANDICK A K,DICK R P,1999.Field management effects on soil enzyme activities[J].Soil Biology&Biochemistry,31(11):1471-1479.
    CALDWELL B A,2005.Enzyme activities as a component of soil biodiversity:a review[J].Pedobiologia,49(6):637-644.
    CHENG L,BOOKER F L,TU C,2012.Arbuscular mycorrhizal fungi increase organic carbon decomposition under elevated CO2[J].Science,337(6098):1084-1087.
    CHENG L,ZHANG N,YUAN M,et al.,2017.Warming enhances old organic carbon decomposition through altering functional microbial communities[J].The ISME Journal,11(8):1825-1835.
    CORNELISSEN J H C,THOMPSON K,1997.Functional leaf attributes predict litter decomposition rate in herbaceous plants[J].New Phytologist,135(1):109-114.
    DE DEYN G B,CORNELISSEN J H,BARDGETT R D,2008.Plant functional traits and soil carbon sequestration in contrasting biomass[J].Ecology Letters,11(5):516-531.
    DORMANN C F,WOODIN S J,2002.Climate change in the arctic:using plant functional types in a meta-analysis of field experiments[J].Functional Ecology,16(1):4-17.
    GIASSON M A,AVERILL C,FINZI A C,2014.Correction factors for dissolved organic carbon extracted from soil,measured using the Mn(III)-pyrophosphate colorimetric method adapted for a microplate reader[J].Soil Biology&Biochemistry,78:284-287.
    GU Y,WANG P,KONG C H,2009.Urease,invertase,dehydrogenase and polyphenoloxidase activities in paddy soil influenced by allelopathic rice variety[J].Eurpean Journal of Soil Biology,45(5-6):436-441.
    HUANG Y,ZOU J W,ZHENG X H,et al.,2004.Nitrous oxide emissions as influenced by amendment of plant residues with different C:N ratios[J].Soil Biology&Biochemistry,36(6):973-981.
    IPCC,2013.Climate change 2013:Thephysical science basis Working groups I contribution to the fifth assessment report of the Intergovermental Panel on Climate Change[R].Sweden:Stockholm.
    JANSSENS I A,DIELEMAN W,LUYSSAERT S,et al.,2010.Reduction of forest soil respiration in response to nitrogen deposition[J].Nature Geoscience,3(5):315-322.
    KUMAR K,GOH K M,2003.Nitrogen release from crop residues and organic amendments as affected by biochemical composition[J].Communications in Soil Science and Plant Analysis,34(17-18):2441-2460.
    KUZYAKOV Y,2002.Review:Factors affecting rhizosphere priming effects[J].Journal of Plant Nutrition&Soil Science,165(4):382-396.
    KUZYAKOV Y,2010.Priming effects:interactions between living and dead organic matter[J].Soil Biology&Biochemistry,42(9):1363-1371.
    LI G Y,HAN H Y,DU Y,et al.,2017.Effects of warming and increased precipitation on net ecosystem productivity:A long-term manipulative experiment in a semi-arid grassland[J].Agricultural and Forest Meteorology,232:359-366.
    LING D J,HUANG Q C,OUYANG Y,2010.Impacts of simulated acid rain on soil enzyme activities in a latosol[J].Ecotoxicology and Environmental Safety,73(8):1914-1918.
    LIU,L.,HU,C S,YANG P P,et al.,2016.Experimental warming-driven soil drying reduced N2O emissions from fertilized crop rotations of winter wheat-soybean/fallow,2009?2014[J].Agriculture,Ecosystems&Environment,219:71-82.
    LIU Y C,LIU S R,WAN S Q,et al.,2017.Effects of experimental throughfall reduction and soil warming on fine root biomass and its decomposition in a warm temperate oak forest[J].Science of The Total Environment,574:1448-1455.
    LUO Y Q,WAN S Q,HUI D F,et al.,2001.Acclimatization of soil respiration to warming in a tall grass prairie[J].Nature,413(6856):622-625.
    LUO Y Q,GERTEN D,LE MAIRE G,et al.,2008.Modelled interactive effects of precipitation,temperature,and CO2 on ecosystem carbon and water dynamics in different climatic zones[J].Global Change Biology,14:1986-1999.
    RUSTAD L E,CAMPBELL J L,MARION G M,et al.,2001.Ameta-analysis of the response of soil respiration,net nitrogen mineralization,and aboveground plant growth to experimental ecosystem warming[J].Oecologia,126(4):543-562.
    SILVER W L,MIYA R K,2001.Global patterns in root decomposition,comparisons of climate and litter quality effects[J].Oecologia,129(3):407-419.
    ST?PNIEWSKA Z,WOLI?SKA A,ZIOMEK J,2009.Response of soil catalase activity to chromium contamination[J].Journal of Environmental Sciences,21(8):1142-1147.
    SUSEELA V,CONANT R T,WALLENSTEIN M D,et al.,2012.Effects of soil moisture on the temperature sensitivity of heterotrophic respiration vary seasonally in an old-field climate change experiment[J].Global Change Biology,18(1):336-348.
    SUSEELA V,THARAYIL N,XING B,et al.,2013.Labile compounds in plant litter reduce the sensitivity of decomposition to warming and altered precipitation[J].New Phytologist,200(1):122-133.
    THANGARAJAN R,BOLAN N S,TIAN G L,et al.,2013.Role of organic amendment application on greenhouse gas emission from soil[J].Science of the Total Environment,465(6):72-96.
    WAN S Q,NORBY R J,LEDFORD J,et al.,2007.Responses of soil respiration to elevated CO2,air warming,and changing soil water availability in a model old-field grassland[J].Global Change Biology,13(11):2411-2424.
    WAN S Q,XIA J Y,LIU W X,et al.,2009.Photosynthetic overcompensation under nocturnal warming enhances grassland carbon sequestration[J].Ecology,90(10):2700-2710.
    WU Z T,DIJKSTRA P,KOCH G W,et al.,2011.Responses of terrestrial ecosystems to temperature and precipitation change:a meta-analysis of experimental manipulation[J].Global Change Biology,17(2):927-942.
    XIA J Y,HAN Y,ZHANG Z,et al.,2009.Effects of diurnal warming on soil respiration are not equal to the summed effects of day and night warming in a temperate steppe[J].Biogeosciences,6(1):1361-1370.
    ZHOU X H,WAN S Q,LUO Y Q,2007.Source components and interannual variability of soil CO2 efflux under experimental warming and clipping in a grassland ecosystem[J].Global Change Biology,13(4):661-775.
    黄继川,彭智平,于俊红,等,2010.施用玉米秸秆堆肥对盆栽芥菜土壤酶活性和微生物的影响[J].植物营养与肥料学报,16(2):348-353.HUANG J C,PENG Z P,YU J H,et al.,2010.Impacts of applying corn-straw compost on microorganisms and enzyme activities in pot soil cultivated with mustard[J].Plant Nutrition and Fertilizer Science,16(2):348-353.
    金婷,2017.稻麦秸秆全量还田对土壤性状和水稻产量的影响[D].扬州:扬州大学:11-12.JIN T.2017.Effects of whole straw of rice and wheat manuring method on soil characteristics and rice production[D].Yangzhou:Yangzhou University:11-12.
    李小刚,崔志军,王玲英,2002.施用秸秆对土壤有机碳组成和结构稳定性的影响[J].土壤学报,39(3):421-428.LI X G,CUI Z J,WANG L Y,2002.Effect of straw on soil organic carbon constitution and structural stability[J].Acta Pedologica Sinica,39(3):421-428.
    路文涛,贾志宽,张鹏,等,2011.秸秆还田对宁南旱作农田土壤活性有机碳及酶活性的影响[J].农业环境科学学报,30(3):522-528.LU W T,JIA Z K,ZHANG P,et al.,2011.Effects of straw returning on soil labile organic carbon and enzyme activity in semi-arid areas of southern ningxia,china[J].Journal of Agro-Environment Science,30(3):522-528.
    吕国红,周广胜,赵先丽,等,2005.土壤碳氮与土壤酶相关性研究进展[J].气象与环境学报(2):6-8.LU G H,ZHOU G S,ZHAO X L,et al.,2005.Progress of the study on the relationship between soil carbon and nitrogen and soil enzyme[J].Journal of Meteorology and Environment(2):6-8.
    马欣,周连仁,王晓巍,等,2012.秸秆对根区土壤酶活性、无机氮及呼吸量的影响[J].中国土壤与肥料(4):27-33.MA X,ZHOU L R,WANG X W,et al.,2012.Effect of straw on enzyme activity,inorganic nitrogen and CO2 respiration of root zone soil[J].Soil and Fertilizer Sciences in China(4):27-33.
    钱海燕,杨滨娟,黄国勤,等,2012.秸秆还田配施化肥及微生物菌剂对水田土壤酶活性和微生物数量的影响[J].生态环境学报,21(3):440-445.QIAN H Y,YANG B J,HUANG G Q,et al.,2012.Effects of returning rice straw to fields with fertilizers and microorganism liquids on soil enzyme activities and microorganisms in paddy fields[J].Ecology and Environmental Sciences,21(3):440-445.
    王志明,朱培立,黄东迈,等,2003.秸秆碳的田间原位分解和微生物量碳的周转特征[J].土壤学报,40(3):446-453.WANG Z M,ZHU B L,HUANG D M,et al.,2003.Straw carbon decomposition in situ in field and characteristics of soil biomass carbon turnover[J].Acta Pedologica Sinica,40(3):446-453.
    吴静,陈书涛,胡正华,等,2015.不同温度下的土壤微生物呼吸及其与水溶性有机碳和转化酶的关系[J].环境科学,36(4):1497-1506.WU J,CHEN S T,HU Z H,et al.,2015.Soil microbial respiration under different soil temperature conditions and its relationship to soil dissolved organic carbon and invertase[J].Environmental Science,36(4):1497-1506.
    徐国伟,段骅,王志琴,等,2009.麦秸还田对土壤理化性质及酶活性的影响[J].中国农业科学,42(3):934-942.XU G W,DUAN Y,WANG Z Q,et al.,2009.Effect of wheat-residue application on physical and chemical characters and enzymatic activities in soil[J].Scientia Agricultura Sinica,42(3):934-942.
    占新华,周立祥,2002.土壤溶液和水体中水溶性有机碳的比色测定[J].中国环境科学,22(5):433-437.ZHAN X H,ZHOU L X,2002.Colorimetric determination of dissolved organic carbon in soil solution and water environment[J].China Environmental Science,22(5):433-437.
    张旭博,徐明岗,张文菊,等,2011.添加有机物料后红壤CO2释放特征与微生物生物量动态[J].中国农业科学,44(24):5013-5020.ZHANG X B,XU M G,ZHANG W J,et al.,2011.Characteristics of CO2 emission and microbial biomass dynamics after adding various organic materials in red soil[J].Scientia Agricultura Sinica,44(24):5013-5020.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700