用户名: 密码: 验证码:
湖南锡矿山超大型锑矿床围岩蚀变元素迁移特征及定量计算研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Elemental Migration and Mass Balance Calculation of Wall Rock Alternation in the Xikuangshan Sb Deposit,Hunan Province
  • 作者:弭希风 ; 胡瑞忠 ; 付山岭 ; 彭建堂 ; 骆金诚 ; 陈应华
  • 英文作者:MI Xi-feng;HU Rui-zhong;FU Shan-ling;PENG Jian-tang;LUO Jin-cheng;CHEN Ying-hua;State Key Laboratory of Ore Deposit Geochemistry,Institute of Geochemistry,Chinese Academy of Sciences;College of Earth Sciences,University of Chinese Academy of Sciences;Key Laboratory of Non-ferrous Metals Metallogenic Prediction of the Ministry of Education,School of Geosciences and Info-physics,Central South University;
  • 关键词:热液蚀变 ; 元素迁移 ; 标准化Isocon法 ; 锡矿山锑矿床
  • 英文关键词:hydrothermal alteration;;elements migration;;normalization isocon method;;Xikuangshan Sb deposit
  • 中文刊名:矿物岩石地球化学通报
  • 英文刊名:Bulletin of Mineralogy,Petrology and Geochemistry
  • 机构:中国科学院地球化学研究所矿床地球化学国家重点实验室;中国科学院大学地球科学学院;中南大学地球科学与信息物理学院有色金属成矿预测教育部重点实验室;
  • 出版日期:2019-01-10
  • 出版单位:矿物岩石地球化学通报
  • 年:2019
  • 期:01
  • 基金:国家自然科学基金重点项目(41230316);; 国家重点基础研究发展计划项目(2014CB440900)
  • 语种:中文;
  • 页:107-117
  • 页数:11
  • CN:52-1102/P
  • ISSN:1007-2802
  • 分类号:P618.66
摘要
湖南锡矿山锑矿床是目前世界上已发现的最大的锑矿床,其硅化非常发育且与矿化关系密切,根据硅化蚀变程度的强弱,从围岩到矿石大致划分为4个带:灰岩→弱硅化灰岩→强硅化灰岩→矿石。为揭示锡矿山锑矿的成矿过程及成矿流体信息,利用Isocon标准化方法,以Al_2O_3为惰性组分,对各蚀变带围岩及矿石的主、微量元素进行质量平衡计算。结果表明,热液蚀变过程中,Si、Sb、Li和Bi等大量迁入,而Ca、Mg、Na和大离子亲石元素Sr、Ba、Rb等大量迁出;成矿热液呈酸性并富硅,其中Hg、As、Au、Tl等元素含量极低,这可能是导致锡矿山锑矿床矿种单一的原因之一。稀土元素除Eu外,其他元素未发生明显的活化迁移,水岩反应并未影响原岩的稀土元素配分模式;蚀变岩及矿石中的Eu负异常可能表明成矿过程是在相对还原的环境下进行的。
        The Xikuangshan Sb deposit is the largest Sb deposit in the world. The silicification alteration is well developed in the deposit,which is closely associated with Sb mineralization. According to the alteration degree of wall rocks,four alteration zones are identified,including fresh limestone,weakly silicified limestone,strongly silicified limestone and highgrade ores. In this study,we carried out detailed elemental migration characteristics of wall rocks and ores from different alteration zones in order to decipher the nature of ore-forming fluids and mineralization process. The Isocon method is used to calculate the mass balance and Al_2O_3 compositions are regarded as immobile component. New results show that the majority elements including Si,Sb,Li and Bi are brought into wall rocks by hydrothermal fluids,whereas elements such as Ca,Mg,Na,Sr,Ba,Rb are significantly extracted out. The ore-forming fluids are acidic and silicic-enriched. Extremely low contents of Hg,Au,Tl and As may be responsible for the simple mineral assemblage in the Xikuangshan Sb deposit.REEs,except Eu,are not activated and migrated in such process and the REE patterns remain unchanged. Both altered rocks and ores have negative Eu anomalies,indicating that the mineralization took place in relatively reduced environment.
引文
Beinlich A,Klemd R,John T,Gao J.2010.Trace-element mobilization during Ca-metasomatism along a major fluid conduit:Eclogitization of blueschist as a consequence of fluid-rock interaction.Geochimica et Cosmochimica Acta,74(6):1892-1922
    Fan D L,Zhang T,Ye J.2004.The Xikuangshan Sb deposit hosted by the upper Devonian black shale series,Hunan,China.Ore Geology Reviews,24(1-2):121-133
    Gao J,John T,Klemd R,Xiong X M.2007.Mobilization of Ti-Nb-Ta during subduction:Evidence from rutile-bearing dehydration segregations and veins hosted in eclogite,Tianshan,NW China.Geochimica et Cosmochimica Acta,71(20):4974-4996
    Gtze J.2009.Chemistry,textures and physical properties of quartz-geological interpretation and technical application.Mineralogical Magazine,73(4):645-671
    Grant J A.1986.The isocon diagram;A simple solution to Gresens’equation for metasomatic alteration.Economic Geology,81(8):1976-1982
    Grant J A.2005.Isocon analysis:A brief review of the method and applications.Physics and Chemistry of the Earth,Parts A/B/C,30(17-18):997-1004
    Gresens R L.1967.Composition-volume relationships of metasomatism.Chemical Geology,2:47-65
    Guo S,Ye K,Chen Y,Liu J B,Mao Q,Ma Y G.2012.Fluid-rock interaction and element mobilization in UHP metabasalt:Constraints from an omphacite-epidote vein and host eclogites in the Dabie orogen.Lithos,136-139:145-167
    Guo S,Ye K,Chen Y,Liu J B.2009.A normalization solution to mass transfer illustration of multiple progressively altered samples using the ISOCON diagram.Economic Geology,104(6):881-886
    Hu R Z,Fu S L,Huang Y,Zhou M F,Fu S H,Zhao C H,Wang Y J,Bi X W,Xiao J F.2017.The giant south China mesozoic low-temperature metallogenic domain:Reviews and a new geodynamic model.Journal of Asian Earth Sciences,137:9-34
    Hu X W,Pei R F,Zhou S.1996.Sm-Nd dating for antimony mineralization in the Xikuangshan deposit,Hunan,China.Resource Geology,46(4):227-231
    John T,Klemd R,Gao J,Garbe-Schnberg C D.2008.Trace-element mobilization in slabs due to non-steady-state fluid-rock interaction:Constraints from an eclogite-facies transport vein in blueschist(Tianshan,China).Lithos,103(1-2):1-24
    Mori Y,Nishiyama T,Yanagi T.2007.Chemical mass balance in a reaction zone between serpentinite and metapelites in the Nishisonogi metamorphic rocks,Kyushu,Japan:Implications for devolatilization.Island Arc,16(1):28-39
    Shannon R D.1976.Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides.Acta Crystallographica,A32:751-767.
    Tan Q P,Xia Y,Xie Z J,Yan J.2015.Migration paths and precipitation mechanisms of ore-forming fluids at the Shuiyindong Carlin-type gold deposit,Guizhou,China.Ore Geology Reviews,69:140-156
    Taylor S R,Mc Lennan S M.1985.The continental crust:Its composition and evolution.London:Blackwell,312
    Whitbread M A,Moore C L.2004.Two lithogeochemical approaches to the identification of alteration patterns at the Elura Zn-Pb-Ag deposit,Cobar,New South Wales,Australia:Use of Pearce Element Ratio analysis and isocon analysis.Geochemistry:Exploration,Environment,Analysis,4(2):129-141
    Yang D S,Shimizu M,Shimazaki H,Li X H,Xie Q L.2006.Sulfur isotope geochemistry of the supergiant Xikuangshan Sb deposit,Central Hunan,China:Constraints on sources of ore constituents.Resource Geology,56(4):385-396
    Yigit O,Hofstra A H.2003.Lithogeochemistry of Carlin-type gold mineralization in the Gold Bar district,Battle Mountain-Eureka trend,Nevada.Ore Geology Reviews,22(3-4):201-224
    郭顺,叶凯,陈意,刘景波,张灵敏.2013.开放地质体系中物质迁移质量平衡计算方法介绍.岩石学报,29(5):1486-1498
    胡阿香,彭建堂.2015.湘中锡矿山煌斑岩与锑矿的关系.矿物学报,35(S1):860-861
    胡阿香,彭建堂.2016.湘中锡矿山中生代煌斑岩及其成因研究.岩石学报,32(7):2041-2056
    胡瑞忠,付山岭,肖加飞.2016.华南大规模低温成矿的主要科学问题.岩石学报,32(11):3239-3251
    胡瑞忠,毛景文,华仁民,范蔚茗.2015.华南陆块陆内成矿作用.北京:科学出版社,1-903
    湖南省地质矿产局.1988.湖南省区域地质志.北京:地质出版社
    解庆林,马东升,刘英俊.1997.蚀变岩中物质迁移的定量计算---以锡矿山锑矿床为例.地质论评,43(1):106-112
    金景福,陶琰,曾令交.2001.锡矿山式锑矿床的成矿流体研究.矿物岩石地球化学通报,20(3):156-164
    刘焕品.1986.锡矿山锑矿床的硅化作用及其形成机制.湖南地质,5(3):27-36
    毛景文,胡瑞忠,陈毓川,王义天.2006.大规模成矿作用与大型矿集区(下册).北京:地质出版社
    彭建堂,胡瑞忠,漆亮,赵军红,符亚洲.2004.锡矿山热液方解石的REE分配模式及其制约因素.地质论评,50(1):25-32
    彭建堂,胡瑞忠,邹利群,刘建雄.2002.湘中锡矿山锑矿床成矿物质来源的同位素示踪.矿物学报,22(2):155-159
    彭建堂,胡瑞忠.2001.湘中锡矿山超大型锑矿床的碳、氧同位素体系.地质论评,47(1):34-41
    陶琰,高振敏,金景福,曾令交.2001.湘中锡矿山式锑矿成矿物质来源探讨.地质地球化学,29(1):14-20
    陶琰,高振敏,金景福,曾令交.2002.湘中锡矿山式锑矿成矿地质条件分析.地质科学,37(2):184-195
    陶琰,金景福.2001.湘中锡矿山式锑矿锑与砷、金的共生分异现象.矿物学报,21(1):67-72
    涂光炽.2000.中国超大型矿床(I).北京:科学出版社
    王翠云,李晓峰,肖荣,白艳萍,杨锋,毛伟,蒋松坤.2012.德兴朱砂红斑岩铜矿热液蚀变作用及元素地球化学迁移规律.岩石学报,28(12):3869-3886
    王世伟,周涛发,袁峰,范裕,吕玉琢.2011.铜陵舒家店岩体的年代学和地球化学特征研究.地质学报,85(5):849-861
    谢桂青,彭建堂,胡瑞忠,贾大成.2001.湖南锡矿山锑矿矿区煌斑岩的地球化学特征.岩石学报,17(4):629-636
    易建斌,付守会,单业华.2001.湖南锡矿山超大型锑矿床煌斑岩脉地质地球化学特征.大地构造与成矿学,25(3):290-295
    印建平,戴塔根.1999.湖南锡矿山超大型锑矿床成矿物质来源、形成机理及其找矿意义.有色金属矿产与勘查,8(6):476-481
    赵振华,涂光炽.2003.中国超大型矿床.II.北京:科学出版社

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700