用户名: 密码: 验证码:
高温高压实验用特种阀门的热应力分析
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Thermal stress analysis of a special valve used in high-temperature and high-pressure experiment
  • 作者:王楚楠 ; 李和平 ; 周宏斌
  • 英文作者:WANG Chu-nan;LI He-ping;ZHOU Hong-bin;Key Laboratory of High-Temperature and High-Pressure Study of the Earth's Interior, Institute of Geochemistry, Chinese Academy of Sciences;University of Chinese Academy of Sciences;
  • 关键词:高温高压阀门 ; 有限元 ; 温度场 ; 应力场
  • 英文关键词:the high-pressure and high-temperature valve;;finite element;;temperature field;;stress field
  • 中文刊名:矿物学报
  • 英文刊名:Acta Mineralogica Sinica
  • 机构:中国科学院地球化学研究所地球内部物质高温高压重点实验室;中国科学院大学;
  • 出版日期:2019-01-09 09:28
  • 出版单位:矿物学报
  • 年:2019
  • 期:02
  • 基金:国家重点研发计划(编号:2016YFC0601101)
  • 语种:中文;
  • 页:96-100
  • 页数:5
  • CN:52-1045/P
  • ISSN:1000-4734
  • 分类号:P59;P31
摘要
为了适应大型水流体-固体相互作用实验装置超高温(600℃)、超高压(100 MPa)的极端工作环境,保证阀门安全有效,以高温高压截止阀为研究对象,通过SolidWorks设计建立三维有限元模型,运用Ansys软件分析该阀门在实际工况下的温度和应力分布。选取4种材料对比分析热传导系数、热膨胀系数、弹性模量对温度和应力分布的影响。对阀门的密封结构和性能进行说明讨论。研究认为,选用镍基合金材料作为制作材料,阀门能够在高温环境下保持足够强度,并且满足实验装置的超高温、超高压工作环境的使用要求。在一定范围内,阀门温度和应力随热传导系数和热膨胀系数的降低以及弹性模量的增大而减小。
        In order to adapt the extreme work environment for the experimental system of hydrothermal fluid and solid interaction at high-temperature(600 ℃) and high-pressure(100 MPa) and to ensure safe and effective of the valve, taking the HTHP cut-off valve as a researching subject, we have designed and established 3 D finite element model using the SolidWorks, and analyzed the temperature and stress distributions of this valve in actual working state using the Ansys software. 4 kinds of materials were selected for comparative analyzing the influences of the thermal conductivity coefficient, thermal expansion coefficient, and elasticity modulus on the temperature and stress distributions of those materials. The sealing structure and performance of valves at operation condition have been discussed. The results show that valve made with the selected nickel-based alloy material can maintain the enough strength at high temperature to satisfy the demand of experimental device working in the ultrahigh temperature and ultrahigh pressure environment. In a certain range, the temperature and stress of the valve are decreased along with the decrease of thermal conductivity coefficient and thermal expansion coefficient but the increase of elasticity modulus.
引文
[1]王慧媛,郑海飞.高温高压实验及原位测量技术[J].地学前缘,2009(1):17-26.
    [2]李胜斌.高温高围压差应力下水流体-固体相互作用实验装置的研制[D].北京:中国科学院大学(博士论文),2017.
    [3]李胜斌,李和平,李涛,等.一种在高压水热环境下钛合金力学性能试验装置和方法[P].中国专利:107091781A,2017.
    [4]陆培文.阀门设计入门到精通[M].北京:机械工业出版社,2013.
    [5]闻邦椿.机械设计手册[M].北京:机械工业出版社,2013.
    [6]陈凤棉.压力容器安全技术[M].北京:化学工业出版社,2004.
    [7]林鹏,张瑞峰,虞亚辉,等.汽轮机旁路阀门阀体温度场和应力场分析[J].热能动力工程,2011,26(2):147-151.
    [8]张桃沙,苏小平,包圳,等.某发动机排气歧管热应力仿真与分析[J].机械设计与制造,2016(11):171-174.
    [9]Li G,Liu J,Jiang G,et al.Numerical simulation of temperature field and thermal stress field in the new type of ladle with the nanometer adiabatic material[J].Advances in Mechanical Engineering,2015,7(4):1-13.
    [10]陈敏,汤文成,张逸芳,等.阀门密封结构中超弹性接触问题的有限元分析[J].中国机械工程,2007,18(15):1773-1775.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700