用户名: 密码: 验证码:
碎屑流冲击刚性挡墙的力学模型研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:An impact model of granular flows on a rigid wall
  • 作者:眭静 ; 姜元俊 ; 樊晓一 ; 宋跃 ; 黄成
  • 英文作者:SUI Jing;JIANG Yuanjun;FAN Xiaoyi;SONG Yue;HUANG Cheng;School of Civil Engineering and Architecture,Southwest University of Science and Technology;Institute of Mountain Hazards and Environment,Chinese Academic of Sciences;Shock and Vibration of Engineering Materials and Structures Key Laboratory of Sichuan Province,Southwest University of Science and Technology;University of Chinese Academy of Sciences;
  • 关键词:边坡工程 ; 模型试验 ; 碎屑流 ; 刚性挡墙 ; 冲击力 ; 摩擦角
  • 英文关键词:slope engineering;;model experiment;;granular flows;;rigid wall;;impact force;;friction angle
  • 中文刊名:岩石力学与工程学报
  • 英文刊名:Chinese Journal of Rock Mechanics and Engineering
  • 机构:西南科技大学土木工程与建筑学院;中国科学院水利部成都山地灾害与环境研究所;西南科技大学工程材料与结构冲击振动四川省重点实验室;中国科学院大学;
  • 出版日期:2018-09-20 11:04
  • 出版单位:岩石力学与工程学报
  • 年:2019
  • 期:01
  • 基金:国家自然科学基金制作项目(41877524);国家自然科学基金青年基金资助项目(41502334);; 中国科学院率先行动“百人计划”资助~~
  • 语种:中文;
  • 页:125-136
  • 页数:12
  • CN:42-1397/O3
  • ISSN:1000-6915
  • 分类号:TU476.4
摘要
山体滑坡或山体崩塌所产生的碎屑流常对拦挡结构造成严重的危害,通过室内模型试验研究刚性挡墙抗碎屑流冲击的力学模型。根据64组试验的碎屑流冲击过程,建立冲击力力学模型,计算出法向冲击力、切向冲击力及冲击力的作用高度。并将试验结果中的最大冲击力及残余力,与Ashwood模型、Adel模型及所提模型进行比较。结果表明,所提模型计算出的冲击力与试验结果更加吻合,Ashwood模型计算出的冲击力相比试验结果偏小,Adel模型的结果相比试验结果也较接近。在假设基底反作用力的位置为堆积区长度的2/3的条件下,冲击力作用高度与试验结果最接近。最大的法向力与切向力都随着基底摩擦角的增大而不同程度的增大,挡墙摩擦角只对切向力有明显影响。研究结果可为滑坡或崩塌碎屑流的防灾减灾设计提供参考依据。
        Retaining walls are often seriously damaged by the dry granular flow resulted from a landslide or a collapse. Laboratory modeling tests were carried out, and an impact force model of the protective structure against the impact of granular flows,for calculating the normal impact force,the tangential impact force and the action point of the normal force,was established based on the granular flow impact process of 64 groups of experiments. The maximum impact force and the residual force obtained from tests were compared with Ashwood model,model and the proposed model. The results show that the impact forces calculated by the developed model and the Adel model are consistent with the experimental results,while the normal impact force calculated by Ashwood model is smaller than the experimental result. Assuming that the base reaction force acts at 2/3 of the deposition length of the dead zone,the action point of the normal force calculated by the new model is closest to the experimental result. Both the maximum normal force and the tangential force increase with increasing the base friction angle,while only the tangential force is obviously influenced by the friction angle of the retaining wall. The research results provide a reference for the disaster mitigation design of landslides or collapse granular flows.
引文
[1]庄卫林,刘振宇,蒋劲松.汶川大地震公路桥梁震害分析及对策[J].岩石力学与工程学报,2009,28(7):1 377-1 387.(ZHUANG Weilin,LIU Zhenyu,JIANG Jinsong.Earthquake-induced damage analysis of highway bridges in Wenchuan earthquake and countermeasures[J].Chinese Journal of Rock Mechanics and Engineering,2009,28(7):1 377-1 387.(in Chinese))
    [2]殷跃平,朱继良,杨胜元.贵州关岭大寨高速远程滑坡--碎屑流研究[J].工程地质学报,2010,18(4):445-454.(YIN Yueping,ZHU Jiliang,YANG Shengyuan.Investigation of a high speed and long run out rockslide debris flow at Dazhai in Guanling of Guizhou Province[J].Journal of Engineering Geology,2010,18(4):445-454.(in Chinese))
    [3]黄河清,赵其华.汶川地震诱发文家沟巨型滑坡-碎屑流基本特征及成因机制初步分析[J].工程地质学报,2010,18(2):168-177.(HUANG Heqing,ZHAO Qihua.Basic characteristics and preliminary mechanism analysis of larges rockslide sturzstrom at Wenjiagou triggered by Wenchuan earthquake[J].Journal of Engineering Geology,2010,18(2):168-177.(in Chinese))
    [4]畅秀俊,张恒亮,贾欣丽.汶川地震牛眠沟高速远程滑坡动力学过程研究[J].勘察科学技术,2013,(4):10-15.(CHANG Xiujun ZHANG Hengliang,JIA Xinli.Study on dynamics of Niumiangou high speed and long distance landslides by Wenchuan earthquake[J].Reconnaissance Science and Technology,2013,(4):10-15.(in Chinese))
    [5]YIN Y P,WANG W P,ZHANG N,et al.The June 2017 Maoxian landslide:Geological disaster in an earthquake area after the Wenchuan Ms 8.0 earthquake[J].Science China Technological Sciences,2017,60(11):1-5.
    [6]何思明.滚石对防护结构的冲击压力计算[J].工程力学,2010,27(9):175-180.(HE Siming.Calculation of compact pressure of rock fall on shide structure[J].Engineering Mechanics,2010,27(9):175-180.(in Chinese))
    [7]何思明,沈均,吴永.滚石冲击荷载下棚洞结构动力响应[J].岩土力学,2011,32(3):781-788.(HE Siming,SHEN Jun,WU Yong.Rock shed dynamic response to impact of rock-fall[J].Rock and Soil Mechanics,2011,32(3):781-788.(in Chinese))
    [8]吴越,刘东升,李明军.岩体滑坡冲击能计算及受灾体易损性定量评估[J].岩石力学与工程学报,2011,30(5):901-909.(WU Yue,LIU Dongsheng,LI Mingjun.Impact energy calculation for rock slop and quantitative assessment of vulunerability for element at risk[J].Chinese Journal of Rock Mechanics and Engineering,2011,30(5):901-909.(in Chinese))
    [9]吴越,刘东升,李明军.滑体下滑及冲击受灾体过程中的能耗规律模型实验[J].岩石力学与工程学报,2011,30(4):693-701.(WUYue,LIU Dongsheng,LI Mingjun.Landslip model experiment for energy dissipation law in sliding and impact processes[J].Chinese Journal of Rock Mechanics and Engineering,2011,30(4):693-701.(in Chinese))
    [10]陈旭丹,孙新利,程金星,等.单体滑坡灾害承灾体的有限元模拟与易损性评估[J].长江科学院院报,2015,32(9):69-75.(CHENXudan,SUN Xinli,CHENG Jinxing,et al.Finite element simulation and vulnerability assessment for bearing body caused by single landslide[J].Journal of Yangtze River Scientific Research Institute,2015,32(9):69-75.(in Chinese))
    [11]FAUG T,BEGUIN R,CHANUT B.Mean steady granular force on a wall overflowed by free-surface gravity-driven dense flows[J].Physical Review E Statistical Nonlinear and Soft Matter Physics,2009,80(1):021305.
    [12]ASHWOOD W,HUNGR O.Estimating the total resisting force in a flexible barrier impacted by a granular avalanche using physical and numerical modeling[J].Canadian Geotechnical Journal,2016,53(10):1 700-1 717.
    [13]JIANG Y J,ZHAO Y,TOWHATA I,et al.Influence of particle characteristics on impact event of dry granular flow[J].Powder Technology,2015,270(A):53-67.
    [14]JIANG Y J,TOWHATA I.Experimental study of dry granular flow and impact behavior against a rigid retaining wall[J].Rock Mechanics and Rock Engineering,2013,46(4):713-729.
    [15]ADEL A,STéPHANE L,THIERRY F.Dry granular avalanche impact force on a rigid wall:analytic shock solution versus discrete element simulations[J].Physical Review E,2018,97(5):052903.
    [16]樊晓一,杨海龙,田述军,等.滑坡碎屑流运动参数与影响因素敏感度研究[J].山地学报,2016,34(6):724-731.(FAN Xiaoyi,YANGHailong,TIAN Shujun,et al.Susceptibility degree of factors influence on the movement parameters of landslide-debris avalanches[J].Journal of Mountain Science,2016,34(6):724-731.(in Chinese))
    [17]樊晓一,田述军,段晓冬,等.地形因子对坡脚型地震滑坡运动参数的影响研究[J].岩石力学与工程学报,2014,33(增2):4 056-4 066.(FAN Xiaoyi,TIAN Shujun,DUAN Xiaodong,et al.Study of topography factors influence on motion parameters for seismic slop toe landslides[J].Chinese Journal of Rock Mechanics and Engineering,2014,33(Supp.2):4 056-4 066.(in Chinese))
    [18]SAVAGE S B,HUTTER K.The motion of a finite mass of granular material down a rough incline[J].Journal of Fluid Mechanics,1989,199(1):177-215.
    [19]PUDASAINI S P,HUTTER K,HSIAU S S,et al.Rapid flow of dry granular materials down inclined chutes impinging on rigid walls[J].Physics of Fluids,2007,19(5):1-77.
    [20]刘鹤年,刘京.流体力学[M].北京:中国建筑工业出版社,2016:159-182.(LIU Henian,LIU Jing.Fluid mechanics[M].Beijing:China Architecture Building Press,2016:159-182.(in Chinese))
    [21]VALENTINO R,BARLA G,MONTRASIO L.Experimental analysis and micromechanical modelling of dry granular flow and impacts in laboratory flume tests[J].Rock Mechanics and Rock Engineering,2008,41(1):153-177.
    [22]PUDASAINI S P,HUTTER K.Avalanche dynamics:dynamics of rapid flows of dense granular avalanches[M].Berlin:Springer-Verlag Berlin Heidelbery,2007:400-401.
    [23]MANCARELLA D,HUNGR O.Analysis of run-up of granular avalanches against steep,adverse slopes and protective barriers[J].Canadian Geotechnical Journal,2010,47(8):827-841.
    [24]李天话,樊晓一,姜元俊.岩土体颗粒级配对滑坡碎屑流冲击作用的影响研究[J].山地学报,2018,36(2):289-297.(LI Tianhua,FANXiaoyi,JIANG Yuanjun.Influence of gradation on the impact effect of landslide debris flow[J].Journal of Mountain Science,2018,36(2):289-297.(in Chinese))
    [25]杨小林,严敬.PIV测速原理与应用[J].西华大学学报:自然科学版,2005,24(1):19-20.(YANG Xiaolin,YAN Jing,Principles for the measurement and image processing using PIV[J].Journal of Xihua University:Natural Science,2005,24(1):19-20.(in Chinese))
    [26]王希麟,张大力,常辙,等.两相流场粒子成像测速技术(PTV-PIV)初探[J].力学学报,1998,30(1):121-125.(WANG Xilin,ZHANGDali,CHANG Zhe,et al.Preliminary investigation of particle image velocimetry(PTV-PIV)technique in two-phase flow[J].Journal of Mechanics,1998,30(1):121-125.(in Chinese))
    [27]万立国,任庆凯,田曦,等.PIV技术及其在两相流测量中的应用[J].环境科学与技术,2010,(增2):463-467.(WAN Liguo,RENQingkai,TIAN Xi,et al.PIV technique and its application in twophase flow measurement[J].Environmental Science and Technology,2010,(Supp.2):463-467.(in Chinese))
    [28]NF En Eurocode Structuraux.Base de calcul destructures[S].La plaine Saint Denis(France),AFNOR,1990(2003).
    [29]THIBERT E,BAROUDI D,LIMAM A,et al.Avalanche impact pressure on an instrumented structure[J].Cold Regions Science and Technology,2008,54(3):206-215.
    [30]JIANG Y J,ZHAO Y.Experimental investigation of dry granular flow impact via both normal and tangential force measurements[J].Geotechnique Letters,2015,5(1/3):33-38.
    [31]徐日庆,陈页开,杨仲轩,等.刚性挡墙被动土压力模型实验研究[J].岩土工程学报,2002,24(5):569-575.(XU Riqing,CHEN Yekai,YANG Zhongxuan,et al.Experimental research on the passive earth pressure acting on a rigid wall[J].Journal of Geotechnical Engineering,2002,24(5):569-575.(in Chinese))
    [32]哈尔滨工业大学理论力学教研室.理论力学[M].北京:高等教育出版社,2009:22-52.(Department of theoretical Mechanics Harbin University of Technology.Theoretical mechanics[M].Beijing:Higher Education Press,2009:22-52.(in Chinese))
    [33]汪荣鑫.数理统计[M].西安:西安交通大学出版社,1986:253-258.(WANG Rongxin.mathematical statistics[M].Xi′an:Xi′an Jiaotong University Press,1986:253-258.(in Chinese))

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700