用户名: 密码: 验证码:
基于花岗闪长岩矿物成分的热导率预测模型
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Thermal Conductivity Prediction Model Based on Mineral Composition of Granodiorite
  • 作者:陈东灿 ; 窦斌 ; 田红 ; 肖鹏 ; 蓝天杉
  • 英文作者:Chen Dongcan;Dou Bin;Tian Hong;Xiao Peng;Lan Tianshan;Faculty of Engineering,China University of Geosciences(Wuhan);College of Environment and Resources,Jinlin University;
  • 关键词:花岗闪长岩 ; 热导率 ; 矿物成分 ; 预测模型
  • 英文关键词:granodiorite;;thermal conductivity;;mineral composition;;prediction model
  • 中文刊名:地质科技情报
  • 英文刊名:Geological Science and Technology Information
  • 机构:中国地质大学(武汉)工程学院;吉林大学环境与资源学院;
  • 出版日期:2019-03-15
  • 出版单位:地质科技情报
  • 年:2019
  • 期:02
  • 基金:国家自然科学基金项目(41674180;41602374);; 中国地质大学(武汉)中央高校基本科研业务费专项资金资助项目(1810491A19);; 中国地质大学(武汉)2018年大学生基础科研训练计划(1810491034)
  • 语种:中文;
  • 页:268-272
  • 页数:5
  • CN:42-1240/P
  • ISSN:1000-7849
  • 分类号:P575
摘要
岩石矿物成分的种类及相应体积分数是影响岩石热导率的主要因素,通过室内实验测定花岗闪长岩的热导率及矿物成分的含量,研究矿物成分对岩石热导率的影响规律。将岩样各矿物成分体积分数转化为相同平板面积的壁面厚度,建立了花岗闪长岩矿物成分对其热导率影响规律的预测模型,预测值与实测值误差在0.2~0.6 W/(m·K)之间,通过修正系数调整模型使误差控制在5%范围,同时分析模型得到花岗闪长岩热导率随石英体积分数与长石体积分数比值的增加而变大,为开发利用干热岩地热能和岩石热物性研究提供理论参考。
        The types and corresponding volume fractions of rock and minerals are the main factors that affect the thermal conductivity of rocks. The thermal conductivity and the content of mineral components of granodiorite are determined by laboratory experiments. The experimental results are used to study the influence of mineral composition on the thermal conductivity of rock. The volume fraction of each mineral component of the rock sample is converted into the wall thickness of the same flat, and a prediction model of the influence of the granodiorite mineral composition on the thermal conductivity is established. The camoarison of the experimental results and the analysis of the prediction model indicate that the thermal conductivity of granodiorite increases with the augment of the ratio of quartz volume fraction and feldspar volume fraction, which provides a theoretical reference for the utilization of hot dry rock geothermal energy and study of thermal properties of rocks.
引文
[1] 陈梓慧,郑克棪,姜建军.试论我国干热岩地热资源开发战略[J]. 水文地质工程地质,2015,42(3):161-166.
    [2] 李德威,王焰新.干热岩地热能研究与开发的若干重大问题[J].地球科学:中国地质大学学报,2015,40(11):1858-1869.
    [3] 许天福,张延军,于子望,等.干热岩水力压裂实验室模拟研究[J].科技导报,2015,33(19):35-39.
    [4] 窦斌,高辉,周刚,等.我国发展增强型地热开采技术所面临的机遇与挑战[J].地质科技情报,2014,33(5):208-210.
    [5] 王晓星,吴能友,等.增强地热系统开发技术研究进展[J].地球物理学进展,2012,27(1):355-362.
    [6] 龚建洛,张金功,等.沉积岩热导率的影响因素研究现状[J].地下水,2013,35(4):246-250.
    [7] Miao Sheqiang,Li Heping,Chen Gang.Progress of high temperature and high pressure experimental study on the thermal conductivity of the minerals and rocks[J].Progress in Geophysics,2013,655/657:123-126.
    [8] Albert K,Schulze M,Franz C,et al.Thermal conductivity estimation model considering the effect of water saturation explaining the heterogeneity of rock thermal conductivity[J].Geothermics,2017,66:1-12.
    [9] Fjeldskaa W,Christie O H J,Midttomme K,et al.On the determination of thermal conductivity of sedimentary rocks and the significance for basin temperature history[J].Petroleum Geoscience,2009,15(9):367-380.
    [10] Andrés C,Rálvarez R,Ordóňez A.Estimation of thermal conductivity of rocks from their mineralogical composition for modeling purpose[J].Environmental Earth Sciences,2016,75(266):1-10.
    [11] Popov Y A.Characterization of rock thermal conductivity by high-resolution optical scanning[J].Geothermics,1999,28:253-276.
    [12] Clauser C.Heat transport processes in the Earth’s crust[J].Surv.Geophys.,2009,(30):163-191.
    [13] 王补宣.工程传热传质学[M].北京:科学出版社,2015.
    [14] C?té J, Konrad J.M.Thermal conductivity of base-course materials[J].NRC Research Press,2005,42:61-78.
    [15] Zhao X G,Wang J,Chen F,et al.Experimental investigations on the thermal conductivity characteristics of Baishan granitic rocks for China's HLW disposal[J].Tectonophysics,2016,683:124-137.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700