用户名: 密码: 验证码:
基于野外Guelph入渗法与室内变水头达西法的土壤饱和渗透系数变化规律
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Variation Law of Soil Saturated Hydraulic Conductivity Based on Field Guelph Infiltration Method and Indoor Variable Head Darcy Method
  • 作者:赵建芳 ; 汪丙国 ; 廖嘉琦 ; 潘惠
  • 英文作者:Zhao Jianfang;Wang Bingguo;Liao Jiaqi;Pan Hui;School of Environmental Studies,China University of Geosciences(Wuhan);
  • 关键词:江汉平原 ; 土壤饱和渗透系数 ; 室内变水头达西法 ; Guelph入渗法
  • 英文关键词:Jianghan Plain;;soil saturated hydraulic conductivity;;variable head Darcy method;;Guelph infiltration method
  • 中文刊名:地质科技情报
  • 英文刊名:Geological Science and Technology Information
  • 机构:中国地质大学(武汉)环境学院;
  • 出版日期:2019-03-15
  • 出版单位:地质科技情报
  • 年:2019
  • 期:02
  • 基金:中国地质调查局地质调查项目(12120114069301)
  • 语种:中文;
  • 页:241-248
  • 页数:8
  • CN:42-1240/P
  • ISSN:1000-7849
  • 分类号:S152.72
摘要
为揭示土壤饱和渗透系数的变化规律,在江汉平原杨林尾-陆溪口地区分别采用Guelph入渗仪和改进的TST-55型土壤渗透仪开展了土壤饱和渗透系数实验。结果表明:采用Guelph入渗法在粉砂质黏壤土中测得冲积物饱和渗透系数相对较大,数量级在10~(-2)~10~(-1)之间,最高达到7.50×10~(-1) m/d,最小为1.40×10~(-2) m/d;湖积物饱和渗透系数在1.86×10~(-3)~4.99×10~(-2) m/d之间;而残积物的为6.05×10~(-3) m/d,相对较小;同为粉砂壤土,相同水位埋深条件下甘蔗地和小麦地(同为耕地)的土壤饱和渗透系数明显比林地的大,这与土壤翻耕及根系、虫孔发育等有关;在相同水位埋深条件下,粉砂壤土的土壤饱和渗透系数普遍比粉砂质黏壤土的大,主要是因为粉砂质黏壤土比粉砂壤土的黏粒比重大、孔隙比相对较小的缘故。室内变水头达西法和Guelph入渗法测得的土壤饱和渗透系数分别介于5.43×10~(-5)~2.10×10~(-3) m/d和1.57×10~(-3)~7.50×10~(-1) m/d之间。室内变水头达西法所测结果明显偏小,主要原因包括:①Guelph入渗法进行现场原位测试时,土壤有效直径相对于室内变水头达西法使用的环刀直径要大得多;②室内变水头达西法所用土样为单一岩性,而Guelph入渗法为原位土层,常常具有双层或多层结构;③Guelph入渗试验期间恰逢雨季,地下水位埋深小,当支持毛细水带接近地表时,Guelph入渗试验将受支持毛细水的影响,从而使Guelph入渗法所测得的结果产生误差。
        In order to reveal the variation law of soil saturated hydraulic conductivity, the soil saturated hydraulic conductivity experiment was carried out by using Guelph infiltration instrument and modified TST-55 soil permeation instrument in Yanglinwei-Luxikou area of Jianghan Plain. The results show that the saturated permeability coefficient of alluvial deposits measured in the silty clay loam by Guelph infiltration method is relatively large, and the order of magnitude is between 10~(-2)-10~(-1), with the highest 7.50×10~(-1) m/d, and the minimum 1.40×10~(-2) m/d. The soil saturated hydraulic conductivity of lacustrine materials is between 1.86×10~(-3) and 4.99×10~(-2) m/d. While the eluvium is 6.05×10~(-3) m/d, relatively small. The soil saturated hydraulic conductivity of soils measured by indoor variable head Darcy method and Guelph infiltration method are between 5.43×10~(-5)-2.10×10~(-3) m/d and 1.57×10~(-3)-7.50×10~(-1) m/d. The results of the indoor variable head Darcy method are significantly smaller. This can be attributed to the following main causes. ①When the Guelph infiltration method is used for on-site testing in situ, the effective diameter of the soil is much larger than the diameter of the ring cutter used in the indoor head change method; ②The soil sample used in the indoor variable head Darcy method is a single lithology, while the Guelph infiltration method is an in situ soil layer, which may have a double or multi-layer structure; ③The Guelph infiltration test coincides with the rainy season, and the groundwater level is buried deep. When the capillary band is supported close to the surface, the Guelph infiltration test will be affected by the support of capillary water, causing errors in the results measured by the Guelph infiltration method.
引文
[1] 胡顺军,田长彦,宋郁东,等.土壤渗透系数测定与计算方法的探讨[J].农业工程学报,2011,27(5):68-72.
    [2] Azooz R H,Arshad M A.Soil infiltration and hydraulic conductivity under long-term no-tillage and conventional tillage systems.[J].Canadian Journal of Soil Science,1996,76(2):143-152.
    [3] Giménez D,Allmaras R R,Huggins D R,et al.Prediction of the saturated hydraulic conductivity-porosity dependence using fractals[J].Soil Science Society of America Journal,1997,61(5):1285-1292.
    [4] Muňoz-Carpena Rafael,Regalado Carlos M.álvarez-Benedi Javier,et al.Field evaluation of the new Philip-Dunne permeameter for measuring saturated hydraulic conductivity[J].Soil Science,2002,167(1):9-24.
    [5] 任尚岗,张振华,杨润亚,等.Philip公式在三维入渗及参数测算中的应用[J].干旱地区农业研究,2011,29(5):192-196.
    [6] 杨诗秀,段新杰.田间测定土壤水分参数的研究:圭尔夫渗透仪的应用[J].灌溉排水学报,1991(2):43-47.
    [7] 于东升,史学正.用Guelph法研究南方低丘缓坡地不同坡位土壤渗透性[J].水土保持通报,2002,22(1):6-9.
    [8] 魏志范.粉性土地区钻孔常水头注水试验求取渗透系数[J].矿产勘查,2009,12(6):49-51.
    [9] 杜欣,曾亚武,唐冬云.基于水下抽水试验的岩体渗透系数研究及应用[J].岩石力学与工程学报,2010,29(2):3542-3548.
    [10] 吕杰,陈植华,龚星.测定土壤饱和渗透系数的试验方法与结果优化[J].安全与环境工程,2013,20(5):144-148.
    [11] 中华人民共和国水电部.土工试验方法标准[M].北京:中国计划出版社,1989.
    [12] 孙文静,刘仕卿,孙德安,等.饱和高庙子膨润土的渗透特性[J].地下空间与工程学报,2015(1):115-119.
    [13] 李平,骆亚生.饱和土的三轴渗透试验研究[J].路基工程,2006(6):32-33.
    [14] Yeh Y J,Lee C H,Chen S T.A tracer method to determine hydraulic conductivity and effective porosity of saturated clays under low gradients[J].Groundwater,2010,38(4):522-529.
    [15] 谢森传,沈言琍.马利奥特(Mariotte)瓶装置的改进及应用[J].水文地质工程地质,1985(2):22-23.
    [16] 闫冰,周智彬,雷加强,等.塔里木沙漠公路防护林带土壤入渗研究[J].水土保持学报,2012,26(4):98-103.
    [17] Reynolds W D.In situ measurement of field-saturated hydraulic conductivity,sorptivity,and the α-parameter using the Guelph permeameter[J].Soil Science,1985,140(4):292-302.
    [18] 王红兰,宋松柏,唐翔宇.基于Guelph法的土壤饱和导水率测定方法对比[J].农业工程学报,2012,28(24):99-104.
    [19] Zhang Z F,Groenevelt P H,Parkin G W.The well-shape factor for the measurement of soil hydraulic properties using the Guelph permeameter[J].Soil & Tillage Research,1998,49(3):219-221.
    [20] 闵雷雷,于静洁,张广英,等.三种方法测估的林地稳渗率对比初探[J].南水北调与水利科技,2010,8(5):36-38.
    [21] 高燕燕,钱会,杨佳,等.重塑马兰黄土渗透性的室内试验研究[J].南水北调与水利科技,2016,14(5):130-136.
    [22] 符二东.变水头法测定渗透系数试验方法分析及探讨[J].山西建筑,2014,40(2):68-69.
    [23] 陈芳,张海涛,王天巍,等.江汉平原典型土壤的系统分类及空间分布研究[J].土壤学报,2014,51(4):761-771.
    [24] 熊峰,甘义群,段艳华.江汉平原地下水中氮素与砷迁移富集的相关性研究[J].安全与环境工程,2015,22(2):39-43.
    [25] 刘徽,邓少平,孙康.江汉平原地下水位监测网优化设计[J].资源环境与工程,2014(5):692-696.
    [26] 王晓翠,朱诚,吴立,等.湖北江汉平原JZ-2010剖面沉积物粒度特征与环境演变[J].湖泊科学,2012,24(3):480-486.
    [27] 黄远洋,陈喜,张志才,等.地下水作用下土壤水蓄量变化及其对蒸发通量影响的模拟[J].河海大学学报:自然科学版,2015,43(6):562-568.
    [28] 付会成,张先伟,王宏兴,等.影响辽宁黄土渗透系数变化因素研究[J].吉林建筑大学学报,2010,27(1):40-43.
    [29] 张华.影响大同地区土壤入渗能力的因素分析[J].人民黄河,2007,29(4):49-50.
    [30] 解文艳,樊贵盛.土壤质地对土壤入渗能力的影响[J].太原理工大学学报,2004,35(5):537-540.
    [31] 《工程地质手册》编写委员会.工程地质手册[M].3版.北京:中国建筑工业出版社,1992.
    [32] 胡伟,邵明安,王全九,等.取样尺寸对土壤饱和导水率测定结果的影响[J].土壤学报,2005,42(6):1040-1043.
    [33] 王全九,汪志荣,张建丰,等.层状土入渗机制与数学模型[J].水利学报,1998(增刊1):77-80.
    [34] 党宏忠,党汉瑾,李卫,等.黄土区两种植物篱不同部位土壤持水特征对比[J].水土保持通报,2015,35(3):78-84.
    [35] 段鹏.包气带岩性结构对地下水补给的影响研究[D].西安:长安大学,2013.
    [36] Ebel B A,Moody J A.Synthesis of soil-hydraulic properties and infiltration time scales in wildfire-affected soils[J].Hydrological Processes,2016.
    [37] Corradini C,Flammini A,Morbidelli R,et al.A conceptual model for infiltration in two-layered soils with a more permeable upper layer:From local to field scale[J].Journal of Hydrology,2011,410(1/2):62-72.
    [38] Hill D E.Wetting front instability in layered soils.[J].Soil Science Society of America Journal,1972,36(5):697-702.
    [39] 袁剑舫,周月华.黏土夹层对地下水上升运行的影响[J].土壤学报,1980,17(1):94-100.
    [40] 贺华,孙之南,伍倩,等.Guelph入渗仪在测定盐田土壤渗透性上的应用[J].盐业与化工,2006,35(6):53-56.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700