用户名: 密码: 验证码:
气候变暖背景下拟建青藏高速公路沿线典型区段多年冻土未来50年退化特征
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Degradation Characteristics of the Permafrost at Typical Sites along Qinghai-Tibet Expressway in the Next 50 years under Climate Warming Background
  • 作者:董元宏 ; 彭惠 ; 罗滔 ; 李双洋 ; 陈鹏 ; 徐婷 ; 张昆昆
  • 英文作者:DONG Yuanhong;PENG Hui;LUO Tao;LI Shuangyang;CHEN Peng;XU Ting;ZHANG Kunkun;CCCC First Highway Consultants Co.,LTD,State Key Laboratory of Road Engineering Safety and Health in Cold and High-Altitude Regions;Xijing University,Shaanxi Key Laboratory for Safety and Durability of Concrete Structures;Northwest Institute of Ecological Environment and Resources,Chinese Academy of Sciences;
  • 关键词:青藏高原 ; 青藏高速公路 ; 气候变暖 ; 多年冻土 ; 退化
  • 英文关键词:Qinghai-Tibet Plateau;;Qinghai-Tibet Expressway;;climate warming;;permafrost;;degradation
  • 中文刊名:灾害学
  • 英文刊名:Journal of Catastrophology
  • 机构:中交第一公路勘察设计研究院有限公司高寒高海拔地区道路工程安全与健康国家重点实验室;西京学院陕西省混凝土结构安全与耐久性重点实验室;中国科学院西北生态环境资源研究院;
  • 出版日期:2019-11-20
  • 出版单位:灾害学
  • 年:2019
  • 期:S1
  • 基金:国家重大科学仪器设备开发专项(2017YFF0108700);; 陕西省创新能力支撑计划-青年科技新星项目(2017KJXX-25,2017KJXX-26,2019KJXX-93,2018KJXX-057);; 陕西省自然科学基础研究计划(2017ZDJC-24);; 中国交建集团创新平台建设应用基础研究项目(2018-ZJKJ-PTJS03)
  • 语种:中文;
  • 页:25-30
  • 页数:6
  • CN:61-1097/P
  • ISSN:1000-811X
  • 分类号:P642.14;U412
摘要
选取青藏高速公路沿线4个典型区段,采用数值预测方法,预测4种气候变暖情景下未来50年多年冻土的退化特征。结果表明:初始多年冻土地温越低,对气候变暖的敏感性越弱;随着初始多年冻土地温的升高,多年冻土对气候变化的主要响应方式由年平均地温升高向上限下降、下限抬升转变。A2情景下冻土退化最严重,线性情景和B1情景多年冻土退化较为温和。到2064年时,A2情景下安多冻土厚度减薄7.94 m,风火山年平均地温升高1.34℃。未来青藏高原低温多年冻土向高温多年冻土转变,冻土厚度减薄,活动层厚度增加,在线位选择和结构设计中应引起充分的重视。
        Four typical sections along Qinghai-Tibet Expressway are selected to predict the degradation characteristics of permafrost in the next 50 years under four climate warming scenarios by numerical prediction method.The results show thatthe lower the initial permafrost temperature is, the weaker the sensitivity to climate warming is.And with the increase of initial permafrost temperature, the main response mode of permafrost to climate warming changed from increase of mean annual ground temperature(MAGT) to descent of permafrost table and ascent of permafrost base.Permafrost degradation is the most serious under A2 scenario, while permafrost degradation is mild under linear scenario and B1 scenario. By 2064, under A2 scenario, the thickness of Anduo permafrost was reduced by 7.94 m, and the annual average ground temperature of Fenghuo volcano was increased by 1.34 C.In the future, the low-temperature permafrost of the Qinghai-Tibet Plateau will change to high-temperature permafrost. The thickness of the permafrost will decrease and the thickness of the active layer will increase, which should be paid more attention to in site selection and structural design.
引文
[1] 汪双杰,王佐,陈建兵.青藏高原工程走廊冻土环境与高速公路布局[M].上海:上海科学技术出版社,2017.
    [2] 汪双杰,陈建兵,王佐.高海拔高寒地区高速公路建设技术[M].上海:上海科学技术出版社,2017.
    [3] 汪双杰,刘戈,纳启财.多年冻土区公路工程施工关键技术[M].上海:上海科学技术出版社,2017.
    [4] 汪双杰,黄晓明.冻土地区道路设计理论与实践[M].北京:科学出版社,2012.
    [5] WU Q B,ZHANG T J.Recent permafrost warming on the Qinghai-Tibetan Plateau[J].Journal of Geophysical Research,2008:113.
    [6] WANG S L,JIN H J,LI S X,et al.Permafrost degradation on the Qinghai-Tibet Plateau and its environmental impacts[J].Permafrost and Periglacial Processes,2000,11(1):43-53.
    [7] WU Q B,ZHANG TJ.Changes in active layer thickness over the Qinghai-Tibetan Plateau from 1995 to 2007[J].Journal of Geophysical Research,2010:115.
    [8] LI R,ZHAO L,DING Y J,et al.Temporal and spatial variations of the active layer along the Qinghai-Tibet Highway in a permafrost region[J].Chinese Science Bulletin,2012,57(35):4609-4616.
    [9] PENG H,MA W,MU Y H,et al.Degradation characteristics of permafrost under the effect of climate warming and engineering disturbance along the Qinghai-Tibet Highway[J].Natural Hazards,2015,75(3):2589-2605.
    [10] 郑然,李栋梁,蒋元春.全球变暖背景下青藏高原气温变化的新特征[J].高原气象,2015,34(6):1531-1539.
    [11] 程国栋,金会军.青藏高原多年冻土区地下水及其变化[J].水文地质工程地质,2013,40(1):1-11.
    [12] CHENG G D,WU T H.Responses of permafrost to climate change and their environmental significance,Qinghai-Tibet Plateau[J].Journal of Geophysical Research,2007:112(F2):F02S03.
    [13] WANG P L,TANG G L,CAO L J,et al.Surface air temperature variability and its relationship with altitude & latitude over the Tibetan Plateau in 1981-2010[J].ProgressusInquisitiones De MutationeClimatis,2012,8(5):313-319.
    [14] 秦大河.中国西部环境演变评估综合报告[M].北京:科学出版社,2002.
    [15] 南卓铜,李述训,程国栋.未来50与100年青藏高原多年冻土变化情景预测[J].中国科学D辑:(地球科学),2004(6):528-534.
    [16] 张中琼,吴青柏.气候变化情景下青藏高原多年冻土活动层厚度变化预测[J].冰川冻土,2012,34(3):505-511.
    [17] 朱林楠.高原冻土区不同下垫面的附面层研究[J].冰川冻土,1988,10(1):8-14.
    [18] 李述训,吴通华.青藏高原地气温度之间的关系[J].冰川冻土,2005,27(5):627-632.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700