用户名: 密码: 验证码:
黄土-泥岩接触面滑坡的两种雨型模型试验
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:LABORATORY MODEL EXPERIMENT OF LANDSLIDES ALONG LOESSMUDSTONE INTERFACE INDUCED BY RAINFALL PATTERNS
  • 作者:朱建东 ; 鄢好 ; 李绍红 ; 吴礼舟
  • 英文作者:ZHU JiANDong;YAN Hao;LI Shaohong;WU Lizhou;State Key Laboratory of Geohazard Prevention and Geoenvironment Protection,Chengdu University of Technology;
  • 关键词:黄土-泥岩接触面边坡 ; 室内模型试验 ; 间断降雨 ; 滑坡 ; 破坏模式
  • 英文关键词:Loess-mudstone interface slope;;Laboratory model experiment;;Intermittent rainfall;;Landslide;;Failure mode
  • 中文刊名:工程地质学报
  • 英文刊名:Journal of Engineering Geology
  • 机构:地质灾害防治与地质环境保护国家重点实验室(成都理工大学);
  • 出版日期:2019-06-15
  • 出版单位:工程地质学报
  • 年:2019
  • 期:03
  • 基金:国家创新研究群体科学基金(41521002);; 国家自然科学基金面上项目(41672282)资助~~
  • 语种:中文;
  • 页:150-158
  • 页数:9
  • CN:11-3249/P
  • ISSN:1004-9665
  • 分类号:P642.22
摘要
黄土边坡变形失稳机理研究对于黄土滑坡灾害防治具有重要意义。黄土-泥岩接触面滑坡作为黄土滑坡类型之一,研究人员已对其失稳基本过程与形成机理有较为清晰的认识。但对于其在不同降雨类型下,特别是强降雨条件下的变形破坏过程则有待进一步探讨。因此,本文对黄土-泥岩接触面边坡开展室内降雨模型试验,研究其在强降雨条件下斜坡变形破坏模式。试验设计连续强降雨和间断强降雨两种降雨条件,对比分析两种降雨条件下边坡雨水入渗规律及变形破坏模式。结果表明:在两种典型降雨模式下,雨水入渗速率由边坡前缘至后缘逐渐降低;在坡体表层,随着降雨由间断至连续过渡,入渗速率逐渐增加;在坡体深部,入渗速率受边坡结构影响;间断降雨下边坡呈现滑移-拉裂失稳;在连续降雨条件坡体则表现为蠕滑-拉裂破坏。
        The study on the deformation and failure mechanism of loess slope is of great significance for the prevention and control of loess landslides. Slope with loess-mudstone interface is one of the loess landslides types.Researchers have clearly understood its basic failure process and mechanism. However,its deformation and failure process under different rainfall patterns,especially under heavy rainfall conditions,need to be further studied.Therefore,this paper conducts a laboratory rainfall experiment of the loess-mudstone interface slope model and studies its deformation and failure mode under heavy rainfall conditions. It designs two kinds of rainfall patterns.They are the continuous strong rainfall and the intermittent strong rainfall. It compares and analyzes the infiltration characteristics and failure modes. The results show that the rainfall infiltration rate gradually decreases from the leading edge to the trailing edge of the slope under two rainfall conditions. In the surface of the slope,the infiltration rate gradually increases with the intermittent to continuous transition of rainfall. In the deep parts of the slope,the slope structure affects the infiltration rate. The slope under intermittent rainfall appears as sliding and fracturing instability,while in the continuous rainfall condition,it behaves as creeping and fracturing failure.
引文
Bai Y F.2014.Experiment study on the cracking mechanism about loess ground under the environment of the cave[D].Xi'an:Chang'an University.
    Chang T L.2016.Lin Jiaping loess-mudstone contact slope stability analysis[D].Xi'an:Northwest University.
    Cheng Y G,Wang Y F.2011.Research on contribution rate for dip angle of bedding landslide[J].Rock and Soil Mechanics,32(12):3708-3712.
    Huang R Q.2007.Large-scale landslides and their sliding mechanisms in China since the 20th century[J].Chinese Journal of Rock Mechanics and Engineering,26(3):433-454.
    Jiang M J,Hu H J,Peng J B,et al.2012.Pore changes of loess before and after stress path tests and their links with mechanical behaviors[J].Chinese Journal of Geotechnical Engineering,34(8):1369-1378.
    Lei C.2014.Research on the formation mechanism of loess-mudstone landslide through numerical simulation[D].Xi'an:Chang'an University.
    Li T L,Long J H,Li X S.2007.Types of loess landslides and methods for their movement forecast[J].Journal of Engineering Geology,15(4):500-505.
    Liu C C.2014.Indoor model experiment on interfacial landslide about loess-mudstone area in inner mongolia[D].Huhehaote:Inner Mongolia University of Technology.
    Liu W.2016.Study on deformation characteristics of slip surface of loessmudstone interface landslide[D].Lanzhou:Lanzhou University.
    Peng J B,Fan Z J,Wu D,et al.2015.Heavy rainfall triggered loessmudstone landslide and subsequent debris flow in Tianshui,China[J].Engineering Geology,186:79-90.
    Qi X,Xu Q,Peng D L,et al.2017.Mechanism of gradual retreat loess landslide caused by groundwater:a case study of the irrigation loess landslide in Heifangtai,Gansu province[J].Journal of Engineering Geology,25(1):147-153.
    Shao S J,Zhou F F,Long J Y.2004.Structural properties of loess and its quantitative parameter[J].Chinese Journal of Geotechnical Engineering,26(4):531-536.
    Shi R H.2013.Formation and evolution mechanism of the loess-red beds interface landslide[D].Lanzhou:Lanzhou University.
    Wang G,Sun P,Wu L Z,et al.2017.Experimental study on mechanism of shallow loess landslides induced by rainfall[J].Journal of Engineering Geology,25(5):1252-1263.
    Wen B P,Wang S J,Wang E Z,et al.2005.Deformation characteristics of loess landslide along the contact between loess and neocene red mudstone[J].Acta Geologica Sinica,79(1):139-151.
    Wu W J,Su X,Liu W,et al.2014.Loess-mudstone interface landslides:characteristics and causes[J].Journal of Glaciology and Geocryology,36(5):1167-1175.
    Wu W J,Wang N Q.2002.Basic types and active features of loess landslide[J].The Chinese Journal of Geological Hazard and Control,13(2):36-40.
    Xu L,Dai F C,Min H.2008.Research progress and some thoughts on loess landslides[J].Advances in Earth Science,23(3):236-242.
    Xu Z J,Lin Z G,Zhang M S.2007.Loess in China and loess landslides[J].Chinese Journal of Rock Mechanics and Engineering,26(7):1297-1312.
    Zhang Z L,Wang T,Wu S R,et al.2017.Seismic performance of loessmudstone slope by centrifuge tests[J].Bulletin of Engineering Geology and the Environment,76(2):671-679.
    Zhang Z L,Wang T,Wu S R,et al.2017.Seismic performance of loessmudstone slope in Tianshui-Centrifuge model tests and numerical analysis[J].Engineering Geology,222:225-235.
    Zhang Z L,Wu S R,Wang T,et al.2016.Centrifugal shaking table test on dynamic response and failure characteristics of loess-mudstone slopes under earthquake[J].Chinese Journal of Rock Mechanics and Engineering,35(9):1844-1853.
    Zhang Z Y,Wang S T,Wang L S.2009.Engineering Geology Analysis Principle[M].3th ed.Beijing:Geological Publishing House.
    Zheng C B.2013.The Numerical simulation of sliding about contact surface between loess and mudstone in inner mongolia autonomous region[D].Huhehaote:Inner Mongolia University of Technology.
    Zhou Y,Liu G G,Bai L Y,et al.2016.Model test study of loess slope instability induced by rainfall[J].Engineering Journal of Wuhan University,49(6):838-843.
    Zhu L F,Gu T F,Hu W,et al.2016.Developmental mechanism of irrigation-induced loess landslides[J].Journal of Engineering Geology,24(4):485-491.
    白玉锋.2014.黄土试样开裂机理试验研究[D].西安:长安大学.
    常天龙.2016.林家坪黄土-泥岩接触面边坡稳定性分析[D].西安:西北大学.
    成永刚,王玉峰.2011.层面倾角对顺层岩质滑坡贡献率研究[J].岩土力学,32(12):3708-3712.
    黄润秋.2007.20世纪以来中国的大型滑坡及其发生机制[J].岩石力学与工程学报,26(3):433-454.
    蒋明镜,胡海军,彭建兵,等.2012.应力路径试验前后黄土孔隙变化及与力学特性的联系[J].岩土工程学报,34(8):1369-1378.
    雷超.2014.黄土-泥岩型滑坡形成机制数值模拟研究[D].西安:长安大学.
    李同录,龙建辉,李新生.2007.黄土滑坡发育类型及其空间预测方法[J].工程地质学报,15(4):500-505.
    刘传成.2014.内蒙古黄土泥岩地带界面滑坡的室内模型试验研究[D].呼和浩特:内蒙古工业大学.
    刘伟.2016.黄土-泥岩接触面滑坡滑带土变形特征研究[D].兰州:兰州大学.
    亓星,许强,彭大雷,等.2017.地下水诱发渐进后退式黄土滑坡成因机理研究——以甘肃黑方台灌溉型黄土滑坡为例[J].工程地质学报,25(1):147-153.
    邵生俊,周飞飞,龙吉勇.2004.原状黄土结构性及其定量化参数研究[J].岩土工程学报,26(4):531-536.
    石瑞红.2013.黄土-红层接触面滑坡形成演化机理[D].兰州:兰州大学.
    王刚,孙萍,吴礼舟,等.2017.降雨诱发浅表层黄土滑坡机理实验研究[J].工程地质学报,25(5):1252-1263.
    吴玮江,王念秦.2002.黄土滑坡的基本类型与活动特征[J].中国地质灾害与防治学报,13(2):36-40.
    吴玮江,宿星,刘伟,等.2014.黄土-泥岩接触面滑坡的特征与成因[J].冰川冻土,36(5):1167-1175.
    徐张建,林在贯,张茂省.2007.中国黄土与黄土滑坡[J].岩石力学与工程学报,26(7):1297-1312.
    许领,戴福初,闵弘.2008.黄土滑坡研究现状与设想[J].地球科学进展,23(3):236-242.
    张泽林,吴树仁,王涛,等.2016.地震作用下黄土-泥岩边坡动力响应及破坏特征离心机振动台试验研究[J].岩石力学与工程学报,35(9):1844-1853.
    张倬元,王士天,王兰生.2009.工程地质分析原理[M].第3版.北京:地质出版社.
    郑程波.2013.内蒙古自治区黄土泥岩接触面滑移的数值模拟[D].呼和浩特:内蒙古工业大学.
    周杨,刘果果,白兰英,等.2016.降雨诱发黄土边坡失稳室内试验研究[J].武汉大学学报(工学版),49(6):838-843.
    朱立峰,谷天峰,胡炜,等.2016.灌溉诱发黄土滑坡的发育机制研究[J].工程地质学报,24(4):485-491.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700