用户名: 密码: 验证码:
Investigation of wave characteristics in a semi-enclosed bay based on SWAN model validated with buoys and ADP-observed currents
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Investigation of wave characteristics in a semi-enclosed bay based on SWAN model validated with buoys and ADP-observed currents
  • 作者:LU ; Jing ; TENG ; Yong ; CHI ; Wanqing ; YIN ; Liping ; WANG ; Daolong
  • 英文作者:LU Jing;TENG Yong;CHI Wanqing;YIN Liping;WANG Daolong;First Institute of Oceanography MNR;Laboratory for Regional Oceanography and Numerical Modeling,Qingdao National Laboratory for Marine Science and Technology;
  • 英文关键词:wave;;simulating waves nearshore(SWAN);;acoustic Doppler profilers(ADPs);;buoy;;swell;;semi-enclosed bay
  • 中文刊名:Journal of Oceanology and Limnology
  • 英文刊名:海洋湖沼学报(英文)
  • 机构:First Institute of Oceanography MNR;Laboratory for Regional Oceanography and Numerical Modeling,Qingdao National Laboratory for Marine Science and Technology;
  • 出版日期:2019-03-15
  • 出版单位:Journal of Oceanology and Limnology
  • 年:2019
  • 期:02
  • 基金:Supported by the National Key R&D Program of China(No.2017YFC1404200);; the National Natural Science Foundation of China(No.41406046);; the Fundamental Research Funds for National Public Research Institutes of China(No.2014T01);; the Overseas Students Science and Technology Activities Project Merit Funding and the ChinaKorea Cooperation Project for Nuclear Safety through the China-Korea Joint Ocean Research Centre(CKJORC);; the National Program on Global Change and Air-Sea Interaction(No.GASI-IPOVAI-05);; the International Cooperative Project on the China-Australia Research Centre for Maritime Engineering of Ministry of Science and Technology(No.2016YFE0101400);; the Qingdao National Laboratory for Marine Science and Technology(Nos.2015ASTP,2016ASKJ16,2015ASKJ01)
  • 语种:英文;
  • 页:62-75
  • 页数:14
  • CN:37-1518/P
  • ISSN:2096-5508
  • 分类号:P731.2
摘要
In this study, the simulating waves nearshore(SWAN) model with a locally refined curvilinear grid system was constructed to simulate waves in Jervis Bay and the neighbouring ocean of Australia, with the aim of examining the wave characteristics in an area with special topography and practical importance.This model was verified by field observations from buoys and acoustic Doppler profilers(ADPs). The model precisions were validated for both wind-generated waves and open-ocean swells. We present an approach with which to convert ADP-observed current data from near the bottom into the significant wave height. Our approach is deduced from the Fourier transform technique and the linear wave theory. The results illustrate that the location of the bay entrance is important because it allows the swells in the dominant direction to propagate into the bay despite the narrowness of the bay entrance. The wave period T p is also strongly related to the wave direction in the semi-enclosed bay. The T p is great enough along the entire propagating direction from the bay entrance to the top of the bay, and the largest T p appears along the north-west coast,which is the end tip of the swells' propagation.
        In this study, the simulating waves nearshore(SWAN) model with a locally refined curvilinear grid system was constructed to simulate waves in Jervis Bay and the neighbouring ocean of Australia, with the aim of examining the wave characteristics in an area with special topography and practical importance.This model was verified by field observations from buoys and acoustic Doppler profilers(ADPs). The model precisions were validated for both wind-generated waves and open-ocean swells. We present an approach with which to convert ADP-observed current data from near the bottom into the significant wave height. Our approach is deduced from the Fourier transform technique and the linear wave theory. The results illustrate that the location of the bay entrance is important because it allows the swells in the dominant direction to propagate into the bay despite the narrowness of the bay entrance. The wave period T p is also strongly related to the wave direction in the semi-enclosed bay. The T p is great enough along the entire propagating direction from the bay entrance to the top of the bay, and the largest T p appears along the north-west coast,which is the end tip of the swells' propagation.
引文
Booij N R,Ris R C,Holthuijsen L H.1999.A third-generation wave model for coastal regions:1.Model description and validation.Journal of Geophysical Research:Oceans,104(C4):7 649-7 666.
    Chen P,Yin Q H,Huang P.2015a.Ef fect of non-Gaussian properties of the sea surface on the low-incidence radar backscatter and its inversion in terms of wave spectra by an ocean wave spectrometer.Chinese Journal of Oceanology and Limnology,33(5):1 142-1 156.
    Chen Z B,Zhang B,He Y J,Qiu Z F,Perrie W.2015b.A new modulation transfer function for ocean wave spectra retrieval from X-band marine radar imagery.Chinese Journal of Oceanology and Limnology,33(5):1 132-1 141.
    Churchill J H,Plueddemann A J,Faluotico S M.2006.Extracting Wind Sea and Swell from Directional Wave Spectra Derived from a Bottom-Mounted ADCP.WHOI-2006-13,https://doi.org/10.1575/1912/1372.
    Komen G J,Hasselmann K,Hasselmann K.1984.On the existence of a fully developed wind-sea spectrum.Journal of Physical Oceanography,14(8):1 271-1 285.
    Mellor G.2013.Pressure-slope momentum transfer in ocean surface boundary layers coupled with gravity waves.Journal of Physical Oceanography,43(10):2 173-2 184.
    Pallares E,Sánchez-Arcilla A,Espino M.2014.Wave energy balance in wave models(SWAN)for semi-enclosed domains-application to the Catalan coast.Continental Shelf Research,87:41-53.
    Pinkel R,Smith J A.1987.Open ocean surface wave measurement using Doppler sonar.Journal of Geophysical Research:Oceans,92(C12):12 967-12 973.
    Rorbaek K,Andersen H.2002.Evaluation of wave measurements with an acoustic Doppler current profiler.In:OCEANS 2000 MTS/IEEE Conference and Exhibition.IEEE,Providence,RI,USA.2:1 181-1 187.
    Siadatmousavi S M,Allahdadi M N,Chen Q,Jose F,Roberts H H.2012.Simulation of wave damping during a cold front over the muddy Atchafalaya shelf.Continental Shelf Research,47:165-177.
    Siadatmousavi S M,Jose F.2015.Winter storm-induced hydrodynamics and morphological response of a shallow transgressive shoal complex:northern Gulf of Mexico.Estuarine,Coastal and Shelf Science,154:58-68.
    Signell R P,Carniel S,Cavaleri L,Chiggiato J,Doyle J D,Pullen J,Sclavo M.2005.Assessment of wind quality for oceanographic modelling in semi-enclosed basins.Journal of Marine Systems,53(1-4):217-233.
    Strong B,Brumley B,Terray E A,Stone G W.2000.The performance of ADCP-derived directional wave spectra and comparison with other independent measurements.In:OCEANS 2000 MTS/IEEE Conference and Exhibition.IEEE,Providence,RI,USA.2:1 195-1 203.
    SWAN Team.2014.Scientific and Technical Documentation.SWAN cycle III version 41.01.Delft University of Technology,Delft,the Netherlands.126pp.
    Wright L D.1976 Nearshore wave-power dissipation and the coastal energy regime of the Sydney-Jervis Bay region,New South Wales:a comparison.Australian Journal of Marine and Freshwater Research,27(4):633-640.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700