用户名: 密码: 验证码:
1982-2014年青藏高原地表蒸散量时空分布及其变化影响因子分析(英文)
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Temporal and Spatial Distribution of Evapotranspiration and Its Influencing Factors on Qinghai-Tibet Plateau from 1982 to 2014
  • 作者:崔明月 ; 王军邦 ; 王绍强 ; 延昊 ; 李英年
  • 英文作者:CUI Mingyue;WANG Junbang;WANG Shaoqiang;YAN Hao;LI Yingnian;School of the Earth Sciences and Resources, China University of Geosciences (Beijing);Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences;Northwest Institute of Plateau Biology, Chinese Academy of Sciences;School of Geography and Information Engineering, China University of Geosciences (Beijing);National Meteorological Center,China Meteorological Administration;
  • 关键词:实际蒸散 ; 青藏高原 ; 气候因子 ; 时空分布
  • 英文关键词:evapotranspiration;;Qinghai-Tibet Plateau;;climatic factors;;spatial and temporal distribution
  • 中文刊名:Journal of Resources and Ecology
  • 英文刊名:资源与生态学报(英文版)
  • 机构:中国地质大学(北京)地球科学与资源学院;中国科学院地理科学与资源研究所院生态系统网络观测与模拟重点实验室;中国科学院西北高原生物研究所;中国地质大学(武汉)地理与信息工程学院;中国气象局国家气象中心;
  • 出版日期:2019-03-30
  • 出版单位:Journal of Resources and Ecology
  • 年:2019
  • 期:02
  • 基金:National Key Basic Research and Development Program(2017YFC0503803);; National Natural Science Foundation of China(31861143015);; Qinghai Province S&T Program(2018-ZJ-T09)
  • 语种:英文;
  • 页:111-122
  • 页数:12
  • CN:11-5885/P
  • ISSN:1674-764X
  • 分类号:P426.2
摘要
蒸散是地球水循环的关键驱动因子,是地表水平衡和能量平衡的重要分量,因而也体现生态系统水文调节局地热调节功能;青藏高原是长江和黄河等重要河流的发源地,该区域水量平衡对区域生态安全具有重要意义。本文对全球尺度发展的遥感蒸散双源模型ARTS,利用涡度相关观测数据进行验证和评价,以空间插值的气象数据,卫星遥感的FPAR和LAI等驱动模型,估测1982-2014年间青藏高原实际蒸散ET,分析其年际和季节动态变化特征,并采用敏感性分析法和多元线性回归分析计算各气象因子变化对蒸散量变化的贡献率,探讨影响青藏高原蒸散量变化的主导因素。结果表明:(1)估测值能解释观测值季节变化的80%以上(复相关系数R~2=0.80,显著性水平P <0.001),表明模型具有较高的估算准确度。(2)近30多年全年、春、夏和秋季影响蒸散年际变化呈显著增加趋势;但变化趋势存在显著的区域分异,全年或夏季藏南河谷地区呈显著降低趋势(每10年降低20 mm以上),而阿里、拉萨河谷、青海海北地区则为增加趋势(每10年增加10 mm以上)。(3)敏感性分析和多元线性回归分析均表明,年际变化趋势的主导因素是气候变暖,其次是降水的不显著增加;但植被变化的影响也较大,与气候因子共同能够解释蒸散趋势的56%(多元线性回归方程R~2=0.56,P<0.001);低覆盖草地多年蒸散分别是高、中覆盖度草地的26.9%和21.1%。青藏高原在显著变暖、不显著变湿的气候变化背景下,地表蒸散的增加必以冰川融水为代价而威胁区域生态环境安全,如何保护生态,维持区域社会可持续发展是难题和巨大挑战。
        Evapotranspiration is the key driving factor of the earth's water cycle, and an important component of surface water and energy balances. Therefore, it also reflects the geothermal regulation function of ecohydrological process. The Qinghai-Tibet Plateau is the birthplace of important rivers such as the Yangtze River and the Yellow River. The regional water balance is of great significance to regional ecological security. In this study, ARTS, a dualsource remote sensing evapotranspiration model developed on a global scale, is used to evaluate the actual evapotranspiration(ET) in the Qinghai-Tibet Plateau from 1982 to 2014, using meteorological data interpolated from observations, as well as FPAR and LAI data obtained by satellite remote sensing. The characteristics of seasonal. interannual and dynamic changes of evapotranspiration were analyzed. The rates at which meteorological factors contribute to evapotranspiration are calculated by sensitivity analysis and multiple linear regression analysis,and the dominant factors affecting the change of evapotranspiration in the Qinghai-Tibet Plateau are discussed.The results show that:(1) The estimated values can explain more than 80% of the seasonal variation of the observed values(R~2 = 0.80, P < 0.001), which indicates that the model has a high accuracy.(2) The evapotranspiration in the whole year, spring, summer and autumn show significant increasing trends in the past 30 years, but have significant regional differences. Whether in the whole year or in summer, the southern Tibetan Valley shows a significant decreasing trend(more than 20 mm per 10 years), while the Ali, Lhasa Valley and Haibei areas show increasing trends(more than 10 mm per 10 years).(3) Sensitivity analysis and multiple linear regression analysis show that the main factor driving the interannual change trend is climate warming, followed by the non-significant increase of precipitation. However, vegetation change also has a considerable impact, and together with climate factors, it can explain 56% of the interannual variation of evapotranspiration(multiple linear regression equation R~2= 0.56, P < 0.001). The mean annual evapotranspiration of low-cover grassland was 26.9% of high-cover grassland and 21.1% of medium-cover grassland, respectively. Considering significant warming and insignificant wetting in the Qinghai-Tibet Plateau, the increase of surface evapotranspiration will threaten the regional ecological security at the cost of glacial melting water. Effectively protecting the ecological security and maintaining the sustainable development of regional society are difficult and huge challenges.
引文
Bonan G B.2008.Forests and climate change:forcings,feedbacks,and the climate benefits of forests.Science,320(5882):1444-1449.
    Bonan G B.2014.Connecting mathematical ecosystems,real-world ecosystems,and climate science.New Phytologist,202(3):731-733.
    Brutsaert W.2005.Hydrology:An Introduction.New York:Cambridge University Press.
    Chen Z Q,Shao Q Q,Liu J Y,et al.2012.Analysis of net primary productivity of terrestrial vegetation on the Qinghai-Tibet Plateau,based on MODIS remote sensing data.Science China Earth Sciences,55(8):1306-1312.
    Deng H,Shao J A.2018.Evapotranspiration and humidity variations in response to land cover conversions in the Three Gorges Reservoir Region.Journal of Mountain Science,15(3):590-605.
    Feng S,Tang M C,Wang D M.1998.The Qinghai-Tibet Plateau is New Evidence for the Starting Zone of Climate Change in China.Chinese Science Bulletin,43(6):633.(in Chinese)
    Fisher J B,Whittaker R J,Malhi Y.2011.ET come home:potential evapotranspiration in geographical ecology.Global Ecology&Biogeography,20(1):1-18.
    Hu Z,Yu G,Zhou Y,et al.2009.Partitioning of evapotranspiration and its controls in four grassland ecosystems:Application of a two-source model.Agricultural and Forest Meteorology,149(9):1410-1420.
    IPCC.2007.Summary for Policymakers of Climate Change 2007:The Physical Science Basis.Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change.Cam-bridge,UK:Cambridge University Press,18(2):95-123.
    Jia P J.2000.Statistics.Beijing:Chinese People’s University Press.
    Li Q,Jing Y S,Ma M J,et al.2018.The characteristics of actual evapotranspiration and influencing factors of paddy field inlow hilly red soil region.Chinese Journal of Ecology,37(1):219-226.(in Chinese)
    Li X,Liang S,Yuan W,et al.2014.Estimation of evapotranspiration over the terrestrial ecosystems in China.Ecohydrology,7(1):139-149.
    Liu S,Qiang H,Dengfeng L,et al.2015.Analysis of characteristics of s patio-temporal evolution of climate factors in Datong river basin of Tibet Plateau.Journal of Water Resources and Water Engineering,26(3):24-29.(in Chinese)
    Liu Y,Zhou Y,Chen J,et al.2013.Evapotranspiration and water yield over China's landmass from 2000 to 2010.Hydrology and Earth System Sciences,17(12):4957-4980.
    Pan B T,Li J J,Chen F H.1995.Qinghai-Tibetan Plateau:a driver and amplifier of global climatic changes-ⅠBasic characteristics of climatic changes in Cenozoic Era.Journal of Lanzhou University(Natural Science Edition),31(3):120-128.(in Chinese)
    Qiang H,Jin X,Liu C,et al.2018.Variations of actual evapotranspiration in the Yangtze River headwater region based on coupled water-energy balance.Journal of Arid Land Resources and Environment,32(3):106-111.(in Chinese)
    Shang L Y,Zhang Y,Lv S H,et al.2015.Energy exchange of an alpine grassland on the eastern Qinghai-Tibetan Plateau.Science Bulletin,60(4):435-446.
    Shao T B,Liu Y Z,Jia R,et al.2017.Changes of energy budget in the Qinghai-Tibet Plateau under the background of global warming.The34th Annual Meeting of the Chinese Meteorological Society.
    Shen Z X,Fu G.2016.Relationships between water use efficiency and environmental temperature and humidity in an alpine meadow in the Northern Tibet.Ecology and Environmental Sciences,25(8):1259-1263.(in Chinese)
    Tang M,Zhang B,et al.2016.Characteristics of temporal and spatial variations of surface aridity index and climatic factors on the impact in headwaters of the three rivers in recent 55 years.Ecology and Environmental Sciences,25(2):248-259.(in Chinese)
    Wang F,Wang Z,Zhang Y,et al.2018.Spatio-temporal variations of evapotranspiration in Anhui Province using MOD16 products.Resources and Environment in the Yangtze Basin,27(3):523-534.(in Chinese)
    Wang J,Dong J,Liu J,et al.2014.Comparison of gross primary productivity derived from GIMMS NDVI3g,GIMMS,and MODIS in Southeast Asia.Remote Sensing,6(3):2108-2133.
    Wang J,Wang J,Ye H,et al.2017.An interpolated temperature and precipitation dataset at 1-km grid resolution in China(2000-2012).Chinese Scientific Data,2(1):72-80.
    Wang Y,Liu Y,Jin J X,et al.2018.Contrast effects of vegetation cover change on evapotranspiration during a revegetation period in the Poyang Lake Basin,China.Forests,9(4):1999-4907.
    Wu J K,Zhang S Q,Wu H,et al.2015.Actual evapotranspiration in Suli Alpine Meadow in northeastern edge of Qinghai-Tibet Plateau,China.Advances in Meteorology,(12):1687-9317.
    Wu Y.2018.Study on the trend and countermeasures of glaciers on the Tibetan Plateau.The Theoretical Platform of Tibetan Development,1:73-75.(in Chinese)
    Yan H,Wang S Q,Lu H Q,et al.2014.Development of a remotely sensing seasonal vegetation‐based Palmer Drought Severity Index and its application of global drought monitoring over 1982-2011.Journal of Geophysical Research Atmospheres,119(15):9419-9440.
    Yan H,Wang S Q,Oechel W,et al.2012.Global estimation of evapotranspiration using a leaf area index-based surface energy and water balance model.Remote Sensing of Environment,124:581-595.
    Yan H,Wang S Q,Wang J B,et al.2016.Assessing spatiotemporal variation of drought in China and its impact on agriculture during 1982-2011by using PDSI indices and agriculture drought survey data.Journal of Geophysical Research-Atmospheres,121(5):2283-2298.
    Yang Q,Ma Z G,Zheng Z Y,et al.2017.Sensitivity of potential evapotranspiration estimation to the thornthwaite and Penman-Monteith methods in the study of global drylands.Advances in Atmospheric Sciences,34(12):1381-1394.
    Yin Y H,WU S H,DAI E F.2010.Determining factors in potential evapotranspiration changes over China in the period 1971-2008.Chinese Science Bulletin,55(29):3329-3337.
    Yin Y H,Wu S H,Zhao D,et al.2012.Impact of climate change on actual evapotranspiration on the Tibetan Plateau during 1981-2010.Acta Geographica Sinica,67(11):1471-1481.(in Chinese)
    Yu L,Feng C Y.2012.Recent progress in climate change over Tibetan Plateau.Plateau and Mountain Meteorology Research,32(3):84-88.(in Chinese)
    Yuan W,Liu S,Yu G,et al.2010.Global estimates of evapotranspiration and gross primary production based on MODIS and global meteorology data.Remote Sensing of Environment,114(7):1416-1431.
    Zeng F M.2014.Global warming aggravates the“warming and humidifying”of the Qinghai-Tibet Plateau.New Tibet,(8):63-63.(in Chinese)
    Zeng Z,Piao S,Xin L,et al.2012.Global evapotranspiration over the past three decades:estimation based on the water balance equation combined with empirical models.Environment Research Letters,7(1):1748-9326.
    Zhan Q Q.2017.Spatial and temporal variations of evapotranspiration in the Qinghai-Tibet Plateau from 2001 to 2014.Science&Technology Information,15(35):218-219.(in Chinese)
    Zhang Q F,Liu G X,Yu H B,et al.2016.Temporal and spatial dynamic of ET based on MOD16A2 in recent fourteen years in Xilingol Steppe.Acta Agrestia Sinica,24(2):286-293.(in Chinese)
    Zhang Q,Yang Q,Cheng J,et al.2018.Characteristics of 3?SRTM Errors in China.Geomatics&Information Science of Wuhan University,43(5):684-690.(in Chinese)
    Zhang T,Gebremichael M,Meng X,et al.2017.Climate‐related trends of actual evapotranspiration over the Tibetan Plateau(1961-2010).International Journal of Climatology,38(1):48-56.
    Zhang X,Yang Y,Piao S,et al.2015.Ecological change on the Tibetan Plateau.Chinese Science Bulletin,60(32):3048-3056.(in Chinese)
    Zhao D S,Wu S H,Yin Y H,et al.2011.Vegetation distribution on Tibetan Plateau under climate change scenario.Regional Environmental Change,11(4):905-915.
    Zhao G S,Dong J W,Cui Y P,et al.2018.Evapotranspiration-dominated biogeophysical warming effect of urbanization in the Beijing-TianjinHebei region,China.Climate Dynamics,327(51):1-15.
    Zhu Z,Bi J,Pan Y,et al.2013.Global data sets of vegetation leaf area index(LAI)3g and fraction of photosynthetically active radiation(FPAR)3g derived from global inventory modeling and mapping studies(GIMMS)normalized difference vegetation index(NDVI3g)for the period 1981 to 2011.Remote Sensing,5(2):927-948.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700