用户名: 密码: 验证码:
思林水库荧光溶解性有机质的特征、来源及其转化动力学
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Sources,Characteristics and Transformation Dynamics of Fluorescent Dissolved Organic Matter in the Silin Reservoir
  • 作者:劳心宇 ; 原杰 ; 刘瑜 ; Khan ; M.G.Mostofa
  • 英文作者:LAO Xin-yu;YUAN Jie;LIU Yu;Khan M.G.Mostofa;Institute of Surface-Earth System Science,Tianjin University;Key Laboratory of Earth and Planetary Physics,Institute of Geology and Geophysics,Chinese Academy of Sciences;
  • 关键词:思林水库 ; 荧光溶解性有机质(FDOM) ; 三维荧光光谱(EEMs) ; 平行因子分析(PARAFAC) ; 荧光组分
  • 英文关键词:Silin Reservoir;;fluorescent dissolved organic matter(FDOM);;excitation-emission matrix spectra(EEMs);;parallel factor analysis(PARAFAC);;fluorescence component
  • 中文刊名:环境科学
  • 英文刊名:Environmental Science
  • 机构:天津大学表层地球系统科学研究院;中国科学院地质与地球物理研究所中国科学院地球与行星物理重点实验室;
  • 出版日期:2018-10-15 16:46
  • 出版单位:环境科学
  • 年:2019
  • 期:03
  • 基金:国家重点研发计划项目(2016YFA0601000)
  • 语种:中文;
  • 页:201-208
  • 页数:8
  • CN:11-1895/X
  • ISSN:0250-3301
  • 分类号:X524
摘要
利用三维荧光光谱(EEM)结合平行因子分析(PARAFAC),研究了思林水库冬季(1月)、春季(4月)、夏季(6月)和秋季(10月)上游入库水体、库区表层水(0 m)、库区深层水(20 m)、出库水体的荧光溶解性有机质(FDOM)不同组分的特征、来源及其转化动力学.结果表明,思林水库的溶解性有机质由3种荧光组分组成,分别是:陆源类腐殖质(C类,C1)、浮游植物源的微生物类腐殖质(M类,C2)和浮游植物源的类蛋白或类色氨酸或类酪氨酸(C3).其中陆源类腐殖质的荧光强度随着入库水、库区表层水、库区深层水和出库水逐渐减少,这表明由于光化学作用、微生物作用、大坝拦截效应等环境因素的影响,类腐殖质随着水体由入库向出库的流动而逐渐降解.相反,微生物类腐殖质(M类)的荧光强度结果表明,在入库-出库过程中,微生物类腐殖质处于产生及部分或完全降解的波动中,这表明微生物类腐殖质是浮游植物的原生产物,并且对于光化学作用、微生物作用和大坝拦截效应有很强的不稳定性.类蛋白或类色氨酸或类酪氨酸主要新产生于夏季和秋季的表层水体中,在冬季和春季表层和深层水体中也有产生;并在出库过程中逐渐减少.这表明类蛋白或类色氨酸或类酪氨酸是浮游植物的原生产物;并且它们受到光化学作用、微生物作用和大坝拦截效应的共同影响,在表层和深层水中生成和降解.因此,这些结果意味着通过平行因子分析确定的荧光溶解性有机质组分的方法,对于更好地理解溶解性有机质在水库水体的转化动力学机制至关重要.
        The aim of this study was to examine the sources and characteristics of various fluorescent dissolved organic matter( FDOM)components as well as their transformation dynamics. FDOM was determined in the incoming,surface( 0 m),deeper( 20 m),and outflowing waters of the Silin Reservoir in winter( January),spring( April),summer( June),and autumn( October) using excitation-emission matrix( EEM) spectra coupled with parallel factor( PARAFAC), EEM-PARAFAC modelling. The EEMPARAFAC modelling results demonstrated that dissolved organic matter( DOM) in the Silin Reservoir waters was composed of three fluorescent components. These included terrestrial humic-like substances( C type) of terrestrial origin( component 1),microbial humic-like substances( M type) of phytoplankton origin( component 2), and protein-like or tryptophan-like or tyrosine-like( component 3) of phytoplankton origin. In addition,the terrestrial humic-like substances( C type) was identified from two fluorescence peaks( peak C at Ex/Em= 305-355/414-458 nm and peak A at Ex/Em~245-270/414-458 nm) while the microbial humiclike substances( M type) was identified from peaks that included peak M at Ex/Em~280-305/380-398 nm and peak A 230-235/380-417 nm. Similarly,protein-like or tryptophan-like or tyrosine-like components were also detected from two fluorescence peaks,including peak T 270-285/316-354 nm and peak Tuv225-230/316-354 nm. The fluorescence intensity of terrestrial humic-like substances gradually decreased in incoming waters to surface( 0 m),deeper( 20 m),and subsequently,in outflowing waters. This indicates the gradual degradation of the humic-like substances and their recalcitrant nature during water transport during the incomingsurface-deeper-outflowing water cycle in both summer and winter seasons by numerous environmental factors. These included photochemical,microbial,and dam barrier-affected physical processes. Conversely,from the fluorescence intensity results of microbial humic-like substances( M type),production or partial( in some cases complete) degradation in surface-deeper-outflowing waters,fluctuated. This suggests that microbial humic-like substances are autochthonously produced from phytoplankton,but are highly labile in response to photochemical,microbial,and dam barrier-affected physical processes. From the fluorescence intensity results of protein-like or tryptophan-like or tyrosine-like substances,it demonstrated that they were newly produced in surface( 0 m) waters in the summer season,but in the winter season they were significantly produced in both surface and deeper waters of the reservoir,and then decreased in the outflowing waters. This suggests that protein-like or tryptophan-like or tyrosine-like substances are autochthonously produced by phytoplankton that simultaneously reproduced and then were degraded in surface and deeper waters by photochemical,microbial,and dam barrier-affected physical processes. These results therefore imply that the FDOM components identified by EEM-PARAFAC modelling are crucial to better understand the source characteristics of bulk DOM,its transformation mechanisms,and its the dynamics in a reservoir water system.
引文
[1]Mostofa K M G,Yoshioka T,Mottaleb A,et al.Photobiogeochemistry of organic matter:principles and practices in water environments[M].Berlin,Heidelberg:Springer,2013.
    [2]Zhang Y L,van Dijk M A,Liu M L,et al.The contribution of phytoplankton degradation to chromophoric dissolved organic matter(CDOM)in eutrophic shallow lakes:field and experimental evidence[J].Water Research,2009,43(18):4685-4697.
    [3]Stedmon C A,Markager S,Bro R.Tracing dissolved organic matter in aquatic environments using a new approach to fluorescence spectroscopy[J].Marine Chemistry,2003,82(3-4):239-254.
    [4]Stedmon C A,Thomas D N,Granskog M,et al.Characteristics of dissolved organic matter in Baltic coastal sea ice:allochthonous or autochthonous origins?[J].Environmental Science&Technology,2007,41(21):7273-7279.
    [5]Yamashita Y,JafféR.Characterizing the interactions between trace metals and dissolved organic matter using excitationemission matrix and parallel factor analysis[J].Environmental Science&Technology,2008,42(19):7374-7379.
    [6]Kowalczuk P,Durako M J,Young H,et al.Characterization of dissolved organic matter fluorescence in the South Atlantic Bight with use of PARAFAC model:interannual variability[J].Marine Chemistry,2009,113(3-4):182-196.
    [7]Balcarczyk K L,Jones J B Jr,JafféR,et al.Stream dissolved organic matter bioavailability and composition in watersheds underlain with discontinuous permafrost[J].Biogeochemistry,2009,94(3):255-270.
    [8]Mostofa K M G,Wu F C,Liu C Q,et al.Characterization of Nanming River(Southwestern China)sewerage-impacted pollution using an excitation-emission matrix and PARAFAC[J].Limnology,2010,11(3):217-231.
    [9]Chen M L,Price R M,Yamashita Y,et al.Comparative study of dissolved organic matter from groundwater and surface water in the Florida coastal Everglades using multi-dimensional spectrofluorometry combined with multivariate statistics[J].Applied Geochemistry,2010,25(6):872-880.
    [10]Zhao W H,Wang J T,Chen M M.Three-dimensional fluorescence characteristics of dissolved organic matter produced by Prorocentrum donghaiense Lu[J].Chinese Journal of Oceanology and Limnology,2009,27(3):564-569.
    [11]Senesi N.Molecular and quantitative aspects of the chemistry of fulvic acid and its interactions with metal ions and organic chemicals:Part I.The electron spin resonance approach[J].Analytica Chimica Acta,1990,232:51-75.
    [12]Leenheer J A,CrouéJ P.characterizing aquatic dissolved organic matter[J].Environmental Science&Technology,2003,37(1):18A-26A.
    [13]Seitzinger S P,Hartnett H,Lauck R,et al.Molecular-level chemical characterization and bioavailability of dissolved organic matter in stream water using electrospray-ionization mass spectrometry[J].Limnology and Oceanography,2005,50(1):1-12.
    [14]Zhang X R,Minear R A,Barrett S E.Characterization of high molecular weight disinfection byproducts from chlorination of humic substances with/without coagulation pretreatment using UF-SEC-ESI-MS/MS[J].Environmental Science&Technology,2005,39(4):963-972.
    [15]Guerard J J,Miller P L,Trouts T D,et al.The role of fulvic acid composition in the photosensitized degradation of aquatic contaminants[J].Aquatic Sciences,2009,71(2):160-169.
    [16]Grannas A M,Cory R M,Miller P L,et al.The role of dissolved organic matter in arctic surface waters in the photolysis of hexachlorobenzene and lindane[J].Journal of Geophysical Research,2012,117(G1):G01003.
    [17]Ma X D,Green S A.Photochemical transformation of dissolved organic carbon in Lake Superior-an in-situ experiment[J].Journal of Great Lakes Research,2004,30(S1):97-112.
    [18]Garcia E,Amyot M,Ariya P A.Relationship between DOCphotochemistry and mercury redox transformations in temperate lakes and wetlands[J].Geochimica et Cosmochimica Acta,2005,69(8):1917-1924.
    [19]Mostofa K M G,Yoshioka T,Konohira E,et al.Photodegradation of fluorescent dissolved organic matter in river waters[J].Geochemical Journal,2007,41(5):323-331.
    [20]Osburn C L,O'Sullivan D W,Boyd T J.Increases in the longwave photobleaching of chromophoric dissolved organic matter in coastal waters[J].Limnology and Oceanography,2009,54(1):145-159.
    [21]Vhtalo A V,Jrvinen M.Photochemically produced bioavailable nitrogen from biologically recalcitrant dissolved organic matter stimulates production of a nitrogen-limited microbial food web in the Baltic Sea[J].Limnology and Oceanography,2007,52(1):132-143.
    [22]Guidi L,Chaffron S,Bittner L,et al.Plankton networks driving carbon export in the oligotrophic ocean[J].Nature,2016,532(7600):465-470.
    [23]Shammi M,Pan X L,Mostofa K M G,et al.Seasonal variations and characteristics differences in the?uorescent components of extracellular polymeric substances from mixed biofilms in saline lake[J].Science Bulletin,2017,62(11):764-766.
    [24]Wang F S,Liu C Q,Wang B L,et al.Disrupting the riverine DIC cycling by series hydropower exploitation in Karstic area[J].Applied Geochemistry,2011,26(S1):S375-S378.
    [25]Yue F J,Li S L,Liu C Q,et al.Spatial variation of nitrogen cycling in a subtropical stratified impoundment in southwest China,elucidated by nitrous oxide isotopomer and nitrate isotopes[J].Inland Waters,2018,8(2):186-195.
    [26]Tranvik L J.Allochthonous dissolved organic matter as an energy source for pelagic bacteria and the concept of the microbial loop[J].Hydrobiologia,1992,229(1):107-114.
    [27]Zheng H,Xu C D,Yang L Y,et al.Diurnal variations of dissolved organic matter in the hydrothermal system of Green Island,Taiwan[J].Marine Chemistry,2017,195:61-69.
    [28]Mostofa K M G,Li L L,Liu C Q.Detection of tyrosine,trace metals and nutrients in cow dung:the environmental significance in soil and water environments[J].Acta Geochimica,2018,37(4):632-638.
    [29]Mostofa K M G,Li W,Wu F C,et al.Environmental characteristics and changes of sediment pore water dissolved organic matter in four Chinese lakes[J].Environmental Science and Pollution Research,2018,25(3):2783-2804.
    [30]卢晓漩,彭文杰,李强,等.岩溶区水库冬季溶解有机质组成特征及来源:以桂林五里峡水库为例[J].环境科学,2017,38(10):4120-4129.Lu X X,Peng W J,Li Q,et al.Distinguishing the properties and sources of the dissolved organic matter in Karst reservoir water during winter using three-dimensional fluorescence spectrum technology:a case study in Wulixia Reservoir of Guangxi province[J].Environmental Science,2017,38(10):4120-4129.
    [31]冯可心,李永峰,姜霞,等.丹江口水库表层沉积物有色可溶性有机物空间分布特征及其来源分析[J].环境化学,2016,35(2):373-382.Feng K X,Li Y F,Jiang X,et al.Distribution and source analysis of chromophoric dissolved organic matter in the surface sediments of the Danjiangkou Reservoir[J].Environmental Chemistry,2016,35(2):373-382.
    [32]Stedmon C A,Bro R.Characterizing dissolved organic matter fluorescence with parallel factor analysis:a tutorial[J].Limnology and Oceanography Methods,2008,6(11):572-579.
    [33]闫丽红,陈学君,苏荣国,等.2010年秋季长江口口外海域CDOM的三维荧光光谱-平行因子分析[J].环境科学,2013,34(1):51-60.Yan L H,Chen X J,Su R G,et al.Resolving characteristic of CDOM by excitation-emission matrix spectroscopy combined with parallel factor analysis in the seawater of outer Yangtze Estuary in Autumn in 2010[J].Environmental Science,2013,34(1):51-60.
    [34]蔡文良,许晓毅,杜娴,等.嘉陵江重庆段DOM三维荧光光谱的平行因子分析[J].环境科学研究,2012,25(3):276-281.Cai W L,Xu X Y,Du X,et al.Parallel factor analysis with EEM on dissolved organic matter in Chongqing section of Jialing River[J].Research of Environmental Sciences,2012,25(3):276-281.
    [35]Arakaki T,Fujimura H,Hamdun A M,et al.Simultaneous measurement of hydrogen peroxide and Fe species(Fe(II)and Fe(tot))in Okinawa Island Seawater:impacts of red soil pollution[J].Journal of Oceanography,2005,61(3):561-568.
    [36]Mostofa K M G,Sakugawa H.Spatial and temporal variations and factors controlling the concentrations of hydrogen peroxide and organic peroxides in rivers[J].Environmental Chemistry,2009,6(6):524-534.
    [37]Richard L E,Peake B M,Rusak S A,et al.Production and decomposition dynamics of hydrogen peroxide in freshwater[J].Environmental Chemistry,2007,4(1):49-54.
    [38]Qian J G,Mopper K,Kieber D J.Photochemical production of the hydroxyl radical in Antarctic waters[J].Deep Sea Research Part I:Oceanographic Research Papers,2001,48(3):741-759.
    [39]Vione D,Falletti G,Maurino V,et al.Sources and sinks of hydroxyl radicals upon irradiation of natural water samples[J].Environmental Science&Technology,2006,40(12):3775-3781.
    [40]Mostofa K M G,Liu C Q,Zhai W D,et al.Reviews and syntheses:ocean acidification and its potential impacts on marine ecosystems[J].Biogeosciences,2016,13(6):1767-1786.
    [41]Tranvik L J,Downing J A,Cotner J B,et al.Lakes and reservoirs as regulators of carbon cycling and climate[J].Limnology and Oceanography,2009,54(6):2298-2314.
    [42]Thomas H,Bozec Y,Elkalay K,et al.Enhanced open ocean storage of CO2from shelf sea pumping[J].Science,2004,304(5673):1005-1008.
    [43]Wang F S,Wang B L,Liu C Q,et al.Carbon dioxide emission from surface water in cascade reservoirs-river system on the Maotiao River,Southwest of China[J].Atmospheric Environment,2011,45(23):3827-3834.
    [44]Omar A M,Olsen A,Johannessen T,et al.Spatiotemporal variations of f CO2in the North Sea[J].Ocean Science,2010,6(1):77-89.
    [45]Malkin S Y,Guildford S J,Hecky R E.Modeling the growth response of Cladophora in a Laurentian Great Lake to the exotic invader Dreissena and to lake warming[J].Limnology and Oceanography,2008,53(3):1111-1124.
    [46]Komatsu E,Fukushima T,Harasawa H.A modeling approach to forecast the effect of long-term climate change on lake water quality[J].Ecological Modelling,2007,209(2-4):351-366.
    [47]Mostofa K M G,Liu C Q,Vione D,et al.Sources,factors,mechanisms and possible solutions to pollutants in marine ecosystems[J].Environmental Pollution,2013,182:461-478.
    [48]王宝利,刘丛强,汪福顺,等.乌江梯级水库碳氮耦合的生物地球化学循环[J].上海大学学报(自然科学版),2015,21(3):294-300.Wang B L,Liu C Q,Wang F S,et al.Carbon and nitrogen coupled biogeochemical cycle in cascade reservoirs of the Wujiang River[J].Journal of Shanghai University(Natural Science),2015,21(3):294-300.
    [49]Mostofa K M G,Yoshioka T,Konohira E,et al.Threedimensional fluorescence as a tool for investigating the dynamics of dissolved organic matter in the Lake Biwa watershed[J].Limnology,2005,6(2):101-115.
    [50]Moran M A,Sheldon W M Jr,Zepp R G.Carbon loss and optical property changes during long-term photochemical and biological degradation of estuarine dissolved organic matter[J].Limnology and Oceanography,2000,45(6):1254-1264.
    [51]Murphy K R,Stedmon C A,Waite T D,et al.Distinguishing between terrestrial and autochthonous organic matter sources in marine environments using fluorescence spectroscopy[J].Marine Chemistry,2008,108(1-2):40-58.
    [52]Hulatt C J,Thomas D N,Bowers D G,et al.Exudation and decomposition of chromophoric dissolved organic matter(CDOM)from some temperate macroalgae[J].Estuarine,Coastal and Shelf Science,2009,84(1):147-153.
    [53]Johannessen S C,Pe1a M A,Quenneville M L.Photochemical production of carbon dioxide during a coastal phytoplankton bloom[J].Estuarine,Coastal and Shelf Science,2007,73(1-2):236-242.
    [54]Yamashita Y,Tanoue E.Chemical characterization of proteinlike fluorophores in DOM in relation to aromatic amino acids[J].Marine Chemistry,2003,82(3-4):255-271.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700