用户名: 密码: 验证码:
基于同步热跟踪法的微量气液反应热测量
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Measurement of gas-liquid reaction heat based on synchronous thermal tracking
  • 作者:张宣凯 ; 张辉 ; 李东 ; 刘应书 ; 张会元 ; 王润 ; 郭亚楼
  • 英文作者:ZHANG Xuan-kai;ZHANG Hui;LI Dong;LIU Ying-shu;ZHANG Hui-yuan;WANG Run;GUO Ya-lou;School of Energy and Environmental Engineering,University of Science and Technology Beijing;Beijing Key Laboratory for Energy Saving and Emission Reduction of Metallurgical Industry,University of Science and Technology Beijing;
  • 关键词:同步热跟踪 ; 微量反应热 ; 吸收 ; 化学反应器
  • 英文关键词:synchronous thermal tracking;;trace reaction heat;;absorption;;chemical reactor
  • 中文刊名:工程科学学报
  • 英文刊名:Chinese Journal of Engineering
  • 机构:北京科技大学能源与环境工程学院;北京科技大学冶金工业节能减排北京市重点实验室;
  • 出版日期:2019-03-08 15:52
  • 出版单位:工程科学学报
  • 年:2019
  • 期:03
  • 基金:北京市科委项目基金资助项目(D161100006016001)
  • 语种:中文;
  • 页:93-101
  • 页数:9
  • CN:10-1297/TF
  • ISSN:2095-9389
  • 分类号:X701
摘要
利用同步热跟踪原理,提供一种测定微量气液反应热的研究方法.通过程序控制容器外壳温度与内部溶液同步升温,减小温度梯度,形成"热屏障",阻止溶液以热传导、对流、辐射的形式与外界环境进行热交换,获得动态绝热环境,提高微量气液反应热直接测量的精度,减少样品用量,无需热补偿.采用MEA(乙醇胺)与MDEA(N-甲基二乙醇胺)两类弱碱吸收液,容积为15 m L,分别在10%、20%、30%、40%和50%质量分数下,测定吸收CO2的反应热.实验表明:同步热跟踪法测量更为准确;随溶液浓度的增加,MEA反应热先降低后升高,MDEA反应热逐渐降低;在质量分数为20%~40%时,MEA、MDEA质量分数对反应热的影响不显著;反应放热形成的升温曲线出现"下凹"现象.
        In the process of CO2 capture by chemical absorption,regeneration energy consumption accounts for 70%-80% of the total energy consumption. Currently,the most critical issue is how to reduce the energy consumption of regeneration. Equipment such as micro-reaction calorimeter( Thermal Hazard Technology provides),differential reaction calorimeter and Setaram C80 thermal differential calorimeter is used to compare the reference and sample solutions,which are simultaneously heated to compensate for heat loss of the sample solution during the measurement,but the heat of reaction cannot be directly measured. In this study,the reaction heats of MEA( ethanolamine) and MDEA( N-methyldiethanolamine) with CO2 at 10%,20%,30%,40%,and 50% mass fraction were measured by synchronous thermal tracing technique. By synchronously controlling the temperature of the shell of the container and the internal solution,the temperature gradient was reduced to form a "thermal barrier"to prevent the solution from exchanging heat with the external environment in the form of conduction,convection,or radiation. A dynamic adiabatic environment was obtained without thermal compensation. The accuracy of direct measurement of the trace gas-liquid reaction heat was improved to save the sample amount. The experimental results show that the simultaneous thermal tracking method is more accurate. With the increase of solution concentration,the reaction heat of MEA first decreases and then increases,and the reaction heat of MDEA decreases gradually. When the mass concentration of MEA and MDEA is between 20% and 40%,the mass concentration has no significant effect on the reaction heat. The curve of temperature rise formed by exothermic reaction appears to be concave.
引文
[1] Du M,Zhang L,Feng B. Effect of pH controlling method on energy consumption of CO2desorption from rsch-solvent. J Chongqing Univ,2010,33(8):123(杜敏,张力,冯波. pH值调节剂对CO2吸收富液解吸能耗的影响.重庆大学学报,2010,33(8):123)
    [2] Qin F,Wang S J,Svendsen H F,et al. Research on heat requirement of aqua ammonia regeneration for CO2capture. CIESC J,2010,61(5):1233(秦锋,王淑娟,Svendsen H F,等.氨法脱碳系统再生能耗的研究.化工学报,2010,61(5):1233)
    [3] Zhang K F,Liu Z L,Wang Y Y,et al. Analysis and calculation of the desorption energy consumption of CO2capture process by chemical absorption method. Chem Ind Eng Prog,2013,32(12):3008(张克舫,刘中良,王远亚,等.化学吸收法CO2捕集解吸能耗的分析计算.化工进展,2013,32(12):3008)
    [4] Ahmady A,Hashim M A,Aroua M K. Absorption of carbon dioxide in the aqueous mixtures of methyldiethanolamine with three types of imidazolium-based ionic liquids. Fluid Phase Equilib,2011,309(1):76
    [5] Zhang F,Ma J W,Zhou Z,et al. Study on the absorption of carbon dioxide in high concentrated MDEA and ILs solutions. Chem Eng J,2012,181-182:222
    [6] Arcis H,Rodier L,Ballerat-Busserolles K,et al. Modeling of(vapor+liquid)equilibrium and enthalpy of solution of carbon dioxide(CO2)in aqueous methyldiethanolamine(MDEA)solutions. J Chem Thermodyn,2009,41(6):783
    [7]i L E,Lundberg J,Pedersen M,et al. Measurements of CO2absorption and heat consumption in laboratory rig. Energy Procedia,2014,63:1569
    [8] Qi G J,Wang S J,Yu H,et al. Prediction model of absorption heat for CO2capture using aqueous ammonia. CIESC J,2013,64(9):3079(齐国杰,王淑娟,Yu Hai,等.氨水吸收CO2的吸收热预测模型.化工学报,2013,64(9):3079)
    [9] Liu B C,Shi C H,Li Q L,et al. Experimental investigation of performances and renewable energy consumption of absorbent DEA in CO2capture system. Eng J Wuhan Univ,2012,45(6):817(刘炳成,史澄辉,李庆领,等.电厂CO2捕集系统DEA化学吸收剂性能与能耗实验研究.武汉大学学报(工学版),2012,45(6):81)
    [10] Chen J,Luo W L,Li H. A review for research on thermodynamics and kinetics of carbon dioxide absorption with organic amines.CIESC J,2014,65(1):12(陈健,罗伟亮,李晗.有机胺吸收二氧化碳的热力学和动力学研究进展.化工学报,2014,65(1):12)
    [11] Gupta M,Svendsen H F. Temperature dependent enthalpy of CO2absorption for amines and amino acids from theoretical calculations at infinite dilution. Energy Procedia,2014,63:1106
    [12] Van Nierop E A,Hormoz S,House K Z,et al. Effect of absorption enthalpy on temperature-swing CO2separation process performance. Energy Procedia,2011,4:1783
    [13] Liu J Z,Wang S J,Zhao B,et al. Absorption of carbon dioxide in aqueous ammonia. Energy Procedia,2009,1(1):933
    [14] Liu J Z,Wang S J,Qi G J,et al. Kinetics and mass transfer of carbon dioxide absorption into aqueous ammonia. Energy Procedia,2011,4:525
    [15] Srisang W,Pouryousefi F,Osei P A,et al. Evaluation of the heat duty of catalyst-aided amine-based post combustion CO2capture. Chem Eng Sci,2017,170:48
    [16] Abdulkadir A,Rayer A V,Quang D V,et al. Heat of absorption and specific heat of carbon dioxide in aqueous solutions of monoethanolamine,3-piperidinemethanol and their blends. Energy Procedia,2014,63:2070
    [17] Xie Q,Aroonwilas A,Veawab A. Measurement of heat of CO2absorption into 2-Amino-2-methyl-1-propanol(AMP)/piperazine(PZ)blends using differential reaction calorimeter. Energy Procedia,2013,37:826
    [18] Arcis H,Rodier L,Ballerat-Busserolles K,et al. Enthalpy of solution of CO2in aqueous solutions of methyldiethanolamine at T=372. 9 K and pressures up to 5 MPa. J Chem Thermodyn,2009,41(7):836
    [19] Arcis H,Rodier L,Ballerat-Busserolles K,et al. Enthalpy of solution of CO2in aqueous solutions of methyldiethanolamine at T=322. 5 K and pressure up to 5 MPa. J Chem Thermodyn,2008,40(6):1022
    [20] Arcis H,Rodier L,Coxam J Y. Enthalpy of solution of CO2in aqueous solutions of 2-amino-2-methyl-1-propanol. J Chem Thermodyn,2007,39(6):878
    [21] Kim I,Svendsen H F. Heat of absorption of carbon dioxide(CO2)in monoethanolamine(MEA)and 2-(Aminoethyl)ethanolamine(AEEA)solutions. Ind Eng Chem Res,2007,46(17):5803
    [22] Guo D F,Gao S W,Luo W L,et al. Effect of sulfolane on CO2absorption and desorption by monethanolamine aqueous solution.CIESC J,2016,67(12):5244(郭东方,郜时旺,罗伟亮,等.环丁砜对乙醇胺溶液吸收和解吸CO2的影响.化工学报,2016,67(12):5244)
    [23] Svensson H,Hulteberg C,Karlsson H T. Heat of absorption of CO2in aqueous solutions of N-methyldiethanolamine and piperazine. Int J Greenhouse Gas Control,2013,17:89
    [24] Kim I,Hoff K A,Hessen E T,et al. Enthalpy of absorption of CO2with alkanolamine solutions predicted from reaction equilibrium constants. Chem Eng Sci,2009,64(9):2027
    [25] Arcis H,Ballerat-Busserolles K,Rodier L,et al. Measurement and modeling of enthalpy of solution of carbon dioxide in aqueous solutions of diethanolamine at temperatures of(322. 5 and372. 9)K and pressures up to 3 MPa. J Chem Eng Data,2012,57(3):840
    [26] Wang X N. Design and implementation of constant temperature control software based on improved PID. Comput Simul,2015,32(4):371(王晓娜.基于改进PID的恒温控制软件设计与实现.计算机仿真,2015,32(4):371)
    [27] Li J,Gu J J. Development of tuning methods for PID parameters.Inform Electr Power,2001(3):11(李剑,谷俊杰. PID参数整定方法进展.电力情报,2001(3):11)
    [28] Yang Z Y,Guan Y C,Zhao S W. Temperature controller design based on self-tuning PID. Shandong Ind Technol,2017(3):3(杨振元,关艳翠,赵硕伟.基于自整定PID的温度控制器设计.山东工业技术,2017(3):3)
    [29] Mathonat C,Majer V,Mather A E,et al. Use of flow calorimetry for determining enthalpies of absorption and the solubility of CO2in aqueous monoethanolamine solutions. Ind Eng Chem Res,1998,37(10):4136
    [30] Kim I,Svendsen H F. Comparative study of the heats of absorption of post-combustion CO2absorbents. Int J Greenhouse Gas Control,2011,5(3):390
    [31] Kim I,Hoff K A,Mejdell T. Heat of absorption of CO2with aqueous solutions of MEA:new experimental data. Energy Procedia,2014,63:1446

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700